首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对树脂传递模塑(RTM)成型的复合材料T型接头进行了工艺参数优化、制备及力学性能实验研究。应用流动模拟软件,对RTM成型的复合材料T型接头进行了基体流动数值模拟,确定模具最佳注射方式和出胶口位置,并优化了影响树脂充模时间的工艺参数,显著提高了RTM接头的工艺性能。根据优化工艺参数结果,制备了RTM成型的复合材料T型接头试样,并进行了拉伸和压缩试验,分析了其破坏机制。根据拉伸和压缩试验现象和结果,发现RTM成型的复合材料T型接头拉伸破坏模式主要为富树脂三角区的树脂与纤维布界面分层,其拉伸破坏主要取决于树脂基体抗剥离分层的拉伸强度;压缩破坏模式为底板中央部位的弯曲分层与折断,其压缩破坏由接头底板中的纤维布抗拉强度决定;T型接头的压缩破坏强度高于拉伸破坏强度。  相似文献   

2.
基于水溶性型芯的RTM成型的整体化复合材料翼盒研制   总被引:1,自引:0,他引:1  
采用全数字化设计技术完成了复合材料整体翼盒的结构设计及铺层设计,同时采用PAM-RTM软件对复合材料翼盒的树脂传递模塑(RTM)成型工艺过程进行了树脂流动模拟,确定了底边线注射的最佳注射方式和工艺参数,并在此基础之上完成了RTM成型模具的设计和制造.采用基于水溶性型芯的RTM整体成型技术,制备了整体化的复合材料翼盒,验...  相似文献   

3.
复合材料厚壁连杆RTM成型工艺模拟及制造验证   总被引:1,自引:0,他引:1       下载免费PDF全文
根据复合材料的可制造性及RTM成型工艺的特点对复合材料厚壁连杆的几何外形进行了优化设计。测定了纤维预成型体的渗透率参数, 采用数值模拟技术研究其RTM成型工艺过程, 并根据RTM流动模拟结果设计了成型模具, 成功地利用RTM工艺制备了复合材料厚壁连杆样件。对样件的力学试验考核表明, 采用基于数值模拟技术的工艺设计能够很好地满足制件的制造及载荷要求。  相似文献   

4.
硅橡胶气囊辅助RTM工艺成型复合材料裙段研究   总被引:1,自引:0,他引:1  
尹昌平  张明龙  刘钧  曾竟成  肖加余 《材料工程》2006,(Z1):290-293,296
VARTM工艺成型的固体火箭发动机壳体复合材料连接裙段构件纤维体积含量较低,复合材料力学性能不佳.本文分别采用VARTM和硅橡胶气囊辅助RTM工艺来成型此裙段构件,进行了玻璃钢件的制备与考核.研究结果表明,硅橡胶气囊辅助RTM工艺成型的裙段性能较VARTM工艺成型的裙段有明显的提高,复合材料纤维体积含量达到了61%,拉伸强度和和弯曲强度分别比VARTM工艺制备的同种复合材料提高了29%和27%,成型裙段构件的整体轴压承载性能也相应地提高了30%以上.  相似文献   

5.
制备苯乙炔全封端的含硅芳炔树脂,与含硅芳炔树脂(PSA)共混,得到满足RTM成型工艺要求的低黏度含硅芳炔树脂,合成三乙氧基乙炔基硅烷(TEOAS)并应用于改性石英纤维(QF)布,采用RTM工艺制备石英纤维增强的PSA树脂复合材料。对共混树脂的加工工艺性、耐热性能、石英纤维的表面和复合材料的性能进行研究。结果表明:共混PSA树脂不但具备较高的耐热性,而且有良好的加工工艺性能;X射线光电子能谱(XPS)分析表明QF表面接枝上乙炔基,TEOAS处理后QF与共混PSA树脂的界面黏结强度增强,复合材料的弯曲强度和层间剪切强度(ILSS)分别较未处理时提高了28.8%和25.4%。  相似文献   

6.
提出了一种设计RTM成型碳纤维织物/环氧复合材料力学性能的新方法.利用BP神经网络,以RTM成型工艺中注模压力、温度和时间为输入量,以复合材料层间剪切强度和弯曲强度为输出量,建立了反应工艺参数与力学性能内在规律的数学模型.利用此模型研究了在注模温度、时间确定的条件下注模压力与复合材料层间剪切强度的关系,网络输出的注模压力对复合材料层间剪切强度的影响规律与实验规律非常接近,说明建立的工艺参数与复合材料力学性能的关系模型是可靠的,可以用此模型对复合材料的力学性能进行设计。  相似文献   

7.
利用真空吸注成型(vacuum resin absorbable molding,VRAM)工艺制备苎麻纤维布与玻璃纤维布混杂铺层的环氧树脂基复合材料。测定复合材料的损耗因子、储能模量的温度谱和力学性能;利用单悬臂梁共振实验测量复合材料的共振频率和自由振动衰减曲线并计算出了阻尼因子。用有限元软件对其共振频率和自由振动衰减实验进行仿真分析。结果表明:通过苎麻纤维布/玻璃纤维布的混杂铺层,能够实现材料阻尼性能和力学性能的可控调节,充分发挥复合材料可设计性强的优势。其中RGR铺层的复合材料的损耗因子比纯玻璃纤维板提高了1.4倍,而拉伸强度比纯苎麻纤维板提高了3倍多;自由振动的有限元模拟曲线和实验曲线基本吻合,表明可以通过模拟软件实现复合材料的虚拟振动测试,从而为材料性能预测和设计提供方便。  相似文献   

8.
为预测三维机织复合材料工艺引入的残余应力/应变,提出工艺制度优化方案,建立了一种工艺过程分析的多尺度模型。通过建立纤维尺度及纱线尺度代表体元(RVE),计算了成型过程中纤维纱线及三维机织复合材料的模量演化历程。考虑固化过程中树脂的化学收缩效应,在纱线尺度上开展热-化学-力学耦合分析,预测了细观残余应力-应变及其演化规律。采用三维机织技术,实现了光纤布拉格光栅传感器(FBG)在三维机织预制体中的预埋,并对其树脂传递模塑(RTM)成型过程中的温度、应变历程进行监测,试验结果验证了有限元模型的准确性。采用基于空间信息、误差信息和优化结果的三种序列采样方法,建立了工艺过程分析代理模型,并开展工艺参数优化设计,结果显示采用优化后的工艺参数,残余应变降低了15.4%,工艺周期缩短了10.6%。   相似文献   

9.
针对目前模压、缠绕等工艺成型烧蚀防热复合材料易造成层间结合差、脱粘、抗烧蚀性能差、易剥蚀等问题,提出了一种新型压力辅助RTM工艺,并对其进行了树脂充模流动模拟,制备了烧蚀防热复合材料,测试了材料的孔隙率、力学性能、烧蚀性能。结果表明:压力辅助RTM工艺具有可行性与优越性,复合材料孔隙率4.64%,层间剪切强度39.3 MPa,线烧蚀率0.017 mm/s,质量烧蚀率0.053 8 g/s。说明压力辅助RTM工艺适合成型烧蚀防热复合材料。   相似文献   

10.
光纤布拉格光栅监测复合材料固化   总被引:6,自引:1,他引:5       下载免费PDF全文
复合材料层合板在固化成型过程中形成的残余应变和应力是影响材料质量的重要因素,它与预浸料铺层在固化工艺过程中产生的应变密切相关。在研究和测试了光纤布拉格光栅应变和温度传感器传感特性的基础上,将二者埋入复合材料预浸料铺层,在热压釜成型工艺过程中监测了材料内部的温度和应变发展历程,由此获得对称正交层合板的宏观残余应变。监测结果表明,单向和对称正交层合板在固化结束后都将产生收缩,对称正交层合板铺层内的残余应变平行于纤维方向为压应变,垂直于纤维方向为拉应变。光纤光栅传感器为复合材料固化监测及层合板残余应力分析提供了一种新的工具,为实现复合材料从制造到服役的全寿命、一体化监测提供了可能。   相似文献   

11.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

12.
A model based on the resolution of the one-dimensional heat conduction equation with a heat generation term was used to predict the temperature profiles in a RTM mold during curing. The simulations were found to be in good agreement with the experiments. This model associated with mold filling considerations can be used to optimize the processing time. The hemp fiber composites manufactured with this RTM process were found to have a very homogeneous structure with no noticeable defects. The mechanical properties of these materials were found to increase with increasing fiber content. However, these properties were much lower than those of a glass fiber composite of comparable fiber content. In addition the flexural creep measurements showed substantial deformation of the natural fiber composites when they were under high load fatigue conditions.  相似文献   

13.
气囊辅助RTM工艺成型导弹舱段构件   总被引:3,自引:1,他引:2       下载免费PDF全文
导弹舱段构件尺寸较大且内部结构复杂, 无法通过传统树脂传递模塑 (Resin transfer molding, RTM)工艺一次整体成型。本文中利用气囊辅助RTM工艺成功整体成型了导弹舱段, 该工艺无需金属芯模, 模具轻便,充压气囊对构件压实效果显著。研究结果表明, 气囊辅助RTM工艺成型的舱段性能较传统RTM工艺成型的舱段有明显提高, 试样纤维体积分数达到了61% , 拉伸强度和弯曲强度分别比传统RTM工艺制备的同种试样提高了25%和26%, 舱段构件的整体极限轴压载荷与极限弯曲载荷分别达到指标值的130%和132%。   相似文献   

14.
基于航空发动机的高温气动载荷环境,对树脂传递模塑(RTM)工艺制备的TG800碳纤维/聚酰亚胺树脂复合材料带安装翻边和壳壁开口的圆柱壳机匣件开展了常温、200℃和260℃高温气动载荷下的仿真分析和承载性能试验。仿真计算得到复合材料机匣件的高应力水平发生在安装翻边和开口处。试验利用所设计的专用试验装置与机匣试验件合围成一套能够解耦内压和轴力的被试腔体结构,通过对被试腔体施加高温气体压力和机械静载联合模拟热气流载荷,相比传统的冲压胶囊加压方式,可以对机匣的翻边和开口处进行充分热压考核。常温、200℃和260℃承载试验后对机匣开口进行了无损检测,得到开口处的分层损伤区域随着载荷增大朝着正方和正圆的趋势扩大,260℃破坏试验得到TG800碳纤维/聚酰亚胺树脂复合材料机匣件的失效模式与传统金属机匣的筒体破裂不同,失效方式为安装翻边断裂。研究表明,RTM工艺TG800碳纤维/聚酰亚胺树脂复合材料结构件的力学性能在200℃以内具备良好的温度稳定性,安装翻边为复合材料机匣件在航空发动机热气流载荷下的薄弱区域,应作为机匣件减重设计的重要优化部位。   相似文献   

15.
《Composites Part A》2007,38(7):1729-1741
The term liquid composite molding (LCM) encompasses a growing list of processes, including resin transfer molding (RTM), injection/compression molding (I/CM), and resin infusion (a.k.a. VARTM). All LCM techniques involve compressive deformation of the fiber reinforcement prior to, and in many cases during mold filling. Forces acting on molds are primarily due to the requirement to compact the reinforcement, and pressure generated due to resin flow through these fibrous structures. An experimental study of the forces exerted on a mold during the RTM and I/CM processes is presented here. Two reinforcing materials have been considered, exhibiting significantly different resistance to compaction. The evolution of mold clamping force has been shown to be strongly influenced by the complex, non-elastic compaction behaviour of fiber reinforcements. The important effects include stress relaxation, an apparent lubrication by the injected fluid, and permanent deformation. Efforts to simulate the experiments will be presented in Part B of this study.  相似文献   

16.
Achievement of high class surface finish is important to the high volume automotive industry when using the resin transfer molding (RTM) process for exterior body panels. Chemical cure shrinkage of the polyester resins has a direct impact on the surface finish of RTM molded components. Therefore, resins with low profile additives (LPA) are used to reduce cure shrinkage and improve surface quality of the composite parts. However, little is known about the behaviour of low profile resins during RTM manufacturing and their ultimate effects on the surface quality of molded plaques. In this work, the effects of controlled material and processing parameters on the pressure variations, process cycle times and ultimately on the surface quality of RTM molded components were investigated. Taguchi experimental design techniques were employed to design test matrices and an optimization analysis was performed. Test panels were manufactured using a flat plate steel mold mounted on a press. Pressure sensors were inserted in the mold cavity to monitor pressure variations during different stages of cure and at various locations in the mold cavity. It was found that a critical amount of LPA (10%) was required to push the material against the mold cavity and to compensate for the resin cure shrinkage. A significant increase in pressure was observed during the later stages of resin cure due to the LPA expansion. The pressure increase had a significant effect on the surface roughness of the test samples with higher pressures resulting in better surface finish. A cure gradient was observed for low pressure injections which significantly reduced the maximum pressure levels.  相似文献   

17.
In resin transfer molding (RTM) a stack of fiber mats or woven rovings is laid inside the mold cavity. Then the mold is sealed and resin is injected. The computer simulation of the injection phase in resin transfer molding (RTM) can help the mold designer to position properly the injection ports and the air vents, to select an adequate injection presssure and to optimize the cycle time. The purpose of this article is to present a finite element simulation model of the filling process that can be applied to three-dimensional “thin shell” molds. An application to a subway seat is described to illustrate the various stages of the simulation  相似文献   

18.
Resin transfer molding (RTM) process has been widely used in automobile industries, because products with large area can be manufactured easily with lower manufacturing cost than that of compression molding or hand lay up method. Although composite structures manufactured by RTM have light weight, good dynamic and impact characteristics, the low surface quality of composite structures made by RTM often hinders the adoption of composite automotive panels because parts made of glass fiber mat and unsaturated polyester often have shrinkage and warpage problems. To investigate the relationship between the shrinkage and the surface quality of composite part, in this work, the formation of surface contour line and the surface quality were measured experimentally with respect to stacking sequence and fiber volume fraction of glass fiber. Based on the results obtained, a real size composite bus housing panel was successfully manufactured.  相似文献   

19.
《Composites Part A》2001,32(6):877-888
Resin transfer molding (RTM) is a promising fabrication method for low to medium volume, high-performance polymer composite structures. Yet there exist several technical issues which impede a wide application base. One of these issues is tooling design. In the RTM process, the arrangement of injection gates and vents of the mold has a significant impact on product quality and process efficiency. In this paper, a systematic approach for optimum design of RTM tooling is introduced. This approach is built upon an RTM virtual manufacturing (simulation) model coupled with a neural network–genetic algorithm optimization procedure. The simulation model is employed to predict resin flow patterns (i.e. potential quality problems) and processing efficiency (mold filling time). With the simulation results, a neural network is trained to create a rapid RTM process model. Genetic algorithms are applied to this rapid RTM process model to search for the optimum solution to RTM process design. This tooling design scheme enables the engineer to determine the optimum locations of injection gates and vents for the best processing performance, i.e. short filling time and high quality level (minimum defects). The approach is illustrated with an example.  相似文献   

20.
The paper presents a study of the fatigue and post-fatigue behavior of a hybrid carbon–glass biaxial fabric reinforced epoxy composite manufactured by the resin transfer molding (RTM) and the hand lay-up (HL) processes, with the main objective of assessing whether a material characterization run at the prototype level of a handicraft technology could be significant for a mass production technology and whether a comparison on static properties (a viable task at an industrial level) could ensure the same level of agreement for the fatigue life and residual properties. Tensile and flexural static tests as well as displacement-controlled bending fatigue tests (R ratio of 0.10) were conducted on two sets of standard specimens, having fiber orientation parallel to the loading direction (on-axis specimens) and at 45° to the loading direction (off-axis specimens). Specimens were subjected to different fatigue loading, with the maximum load level up to 60% of the average ultimate flexural strength, and damage in the laminate was continuously monitored through the loss of bending moment during cycling. After 106 cycles, the fatigue test was stopped and residual properties were measured. Micrographs of sample sections revealed some voidage for HL specimens while resin rich areas were observed for RTM specimens. Results of the static tensile and flexural tests pointed out lower mechanical properties for the RTM specimens when tested on-axis and slightly higher properties when tested off-axis. Regardless of specimen fiber orientation, the fatigue and post-fatigue performance of RTM samples was inferior to that of HL specimens with the gap increasing for increasing fatigue load levels. The result was ascribed to the presence in RTM samples of resin-rich areas, which are reported to have limited influence on the laminate static properties but which may act as initiation sites for fatigue cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号