首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
为了提高燃料电池的机械强度并降低加工成本,设计了一种基于不锈钢材料的空气自呼吸式微型直接甲醇燃料电池(DMFC).采用高温微型冲压技术制作电池的极板,并在其表面溅射Au和TiN来防止电化学腐蚀和减少接触电阻.在不同运行参数条件下对电池进行性能和稳定性的测试,结果表明阳极流速、甲醇浓度以及工作温度等均对电池性能有较明显的影响.该自呼吸式微型直接甲醇燃料电池在室温(20℃)条件下最高功率密度达到23.38 mW/cm2,并在温度40℃时可稳定地长时间工作,具有一定的应用价值.  相似文献   

2.
为了提高燃料电池的有效面积比并减少封装用时,采用紫外固化技术成功封装了微型直接甲醇燃料电池.首先基于非硅MEMS工艺制作了带有封装孔的燃料电池集流板,然后组装燃料电池并在封装孔和两集流板间缝隙中注入紫外固化胶,最后用紫外灯照射30s完成封装.实验结果显示,电池在室温、全被动、3mol/L甲醇的条件下,峰值功率密度为2.1mW/cm^2,内阻为800mΩ.cm^2.这说明紫外固化封装技术对微型直接甲醇燃料电池来说是一种有效的方法,并有望应用于其他MEMS器件的封装.  相似文献   

3.
基于MEMS技术的微型直接甲醇燃料电池的设计与制作   总被引:2,自引:1,他引:1  
研制了一种硅基微型直接甲醇燃料电池,其具有结构简单、质量轻、体积小以及比能量密度高等特点对点型、螺旋蛇型和栅型等流场结构进行优化设计模拟,从而为燃料电池极板设计提供可靠的依据.利用MEMS技术完成了这种微型直接甲醇燃料电池的制作,在对不同流场结构的实验研究中,发现栅型流场结构的微型直接甲醇燃料电池性能要好于其他流场结构,这与仿真结果一致.在常温下,当甲醇溶液物质的量浓度为1.5mol/L时,微型直接甲醇燃料电池最大输出功率密度为5.9mW/cm^2.  相似文献   

4.
为降低甲醇的渗透,提高直接甲醇燃料电池的性能,许多研究者致力于低甲醇渗透质子交换膜的研究.每种膜都有优缺点,综述了改性Nation膜及其替代膜的研究现状,指出它们在直接甲醇燃料电池中的应用前景.  相似文献   

5.
分别采用溅射和化学镀法在质子交换膜Nafion117膜表面获得薄钯层,通过扫描电镜(SEM)、能量色散法(EDX)、X射线衍射(XRD),甲醇渗透、质子电导率等性能测试来表征钯镀层的性能.SEM测试发现,采用溅射法在质子交换膜表面获得的薄钯镀层有不均匀的裂纹,而采用化学镀的方法获得的钯膜未发现有皲裂现象;EDX测试表明,镀层只含有钯和少量的磷;XRD测试表明形成的钯以微晶态存在;甲醇渗透测试证明化学镀钯层可以使Nafion117膜的甲醇渗透率降低一个数量级,这表明采用化学镀方法获得薄钯镀层的方法在降低直接甲醇燃料电池质子交换膜的甲醇渗透方面具有很好的应用前景.  相似文献   

6.
用0.1mol/L(NH42)S2O8/1mol/L盐酸溶液作引发剂,采用原位化学聚合的方法将苯胺单体聚合在Nafion~112膜基体中.扫描电镜(SEM)和能谱(EDX)测试结果表明,复合膜的表面和Nafion~112膜相比有明显变化,苯胺主要聚合在膜的两侧.复合膜的红外光谱中出现明显聚苯胺(PANI)的特征吸收峰说明,苯胺成功地聚合在Nafion~112膜中.完全湿润状态下复合膜的质子电导率和Nafion~112膜相比有少许下降.甲醇渗透性能测试表明,复合膜具有明显的阻醇作用,NF/PANI-2膜的甲醇渗透率值是1.83×10-6 cm2/s和Nafion~112膜相比降低了44%.相应地由NF/PANI-2膜组装的直接甲醇燃料电池(DMFC)开路电压值比Nafion~112膜的提高了7%,最大功率密度提高了30%.  相似文献   

7.
一种新型含氟含芴聚芳醚酮质子交换膜的合成和表征   总被引:1,自引:0,他引:1  
以双酚芴、十氟联苯和磺化二氟酮为单体,合成磺化含氟聚芴醚酮(Sulfonated-fluo-rinated fluorene-containing poly(arylene ether ketone)s,SFPEEK).SFPEEK可溶于极性有机溶剂,具有较高的黏度,易于浇铸形成柔韧透明的薄膜.用其制成的质子交换膜表现出良好的热稳定性和抗水解、抗氧化性能.在相同测试条件下,SFPEEK膜具有与杜邦公司Nation 117膜相当的质子电导率,同时,具有比Nafion 117更好的耐甲醇渗透性能.直接甲醇燃料电池(DMFC)单池测试表明,放电到0.2 V时,用SFPEEK膜制备的单池电流密度可达66 mA/cm2,电池性能优于相同条件下用Nafion117膜组装的单池(电流密度60 mA/cm2).  相似文献   

8.
以磺化聚醚醚酮(SPEEK)为基体,以有机改性的蒙脱土(OMMT)为无机相,采用溶液插层法成功制备出了可望应用于直接甲醇燃料电池的SPEEK/OMMT复合型质子交换膜.通过X射线衍射(XRD)表征了复合膜的微观结构,并采用交流阻抗和隔膜扩散方法分别考察了复合膜的质子传导性能和阻醇性能.结果表明,蒙脱土的片层间距超过4.4 nm,SPEEK高分子链已插层到蒙脱土片层之间.与纯SPEEK膜相比,SPEEK/OMMT复合膜的质子传导率有所降低,但在90℃也达到了1.2×10-2S/cm的水平,而且蒙脱土的加入明显地降低了SPEEK膜的甲醇渗透率.  相似文献   

9.
利用异丙醇水溶液溶解废弃Nafion膜,异丙醇体积分数在60%~75%之间的水溶液能在220℃相对较快的溶解Nafion膜制得溶液,利用二甲基亚砜(DMSO)作为溶剂制备再铸膜.再铸膜酸度(EW)和溶胀度(SW)测试结果接近商品膜数值;红外光谱、X射线衍射分析表明再铸膜具有与商品膜相似的结构;甲醇渗透、电池性能测定结果表明,与商品Nafion115膜相比,具有相同厚度的再铸膜降低了甲醇渗透,适合应用于直接甲醇燃料电池中.  相似文献   

10.
利用异丙醇水溶液溶解废弃Nafion膜,异丙醇体积分数在60%~75%之间的水溶液能在220℃相对较快的溶解Nafion膜制得溶液,利用二甲基亚砜(DMS0)作为溶剂制备再铸膜。再铸膜酸度(EW)和溶胀度(SW)测试结果接近商品膜数值;红外光谱、X射线衍射分析表明再铸膜具有与商品膜相似的结构;甲醇渗透、电池性能测定结果表明,与商品Nafion115膜相比,具有相同厚度的再铸膜降低了甲醇渗透,适合应用于直接甲醇燃料电池中。  相似文献   

11.
针对微型直接甲醇燃料电池(DMFC)阳极传质效率低和性能差等问题,对DMFC阳极流场结构进行了研究.利用MEMS技术实现了具有点形、平行和蛇形等阳极流场结构的硅基自呼吸式DMFC,测试对比结果表明单蛇形流场结构性能要优于其他几种流场;另外,对单蛇形流场结构参数进行了优化,结果表明当流道宽度∶脊的宽度∶流道长度为2∶3∶254时,电池性能达到最佳.在此基础上,为了改善反应物到催化层的传质效率和提高性能,提出了一种渐缩式单蛇形流场结构,其电池最大输出功率密度达到15.41 mW/cm2,比传统等宽式单蛇形流场提高了将近35%,为便携式微能源系统的应用开发奠定了基础.  相似文献   

12.
为达到低成本、批量化制备微针阵列的目的,提出了一种分别制备微针针尖模具和微针立柱模具的微针模具制备方法.制备微针针尖硅模具是采用湿法刻蚀方法,SU-8微针的立柱部分则采用套刻工艺制备.以此模具为母版,采用聚二甲基硅氧烷(PDMS)二次转写技术获得PDMS二次母版.以PDMS母版为模具,分别用浇铸法制备了3种不同聚合物材料(左旋聚乳酸(PLLA),聚苯乙烯(PS),透明质酸(HA))的微针阵列;还以PDMS母版为模具,用电铸法制备了金属Ni微针阵列.该微针阵列的密度约为300根针/cm2.对制备的4种微针进行力学特性测试,实验结果表明,加工出的微针有足够的力学强度,可用于无痛注射.  相似文献   

13.
Direct methanol fuel cells (DMFC) are studied extensively owing to their simple cell configuration, high volume energy density, short start-up time and operation reliability. However, the major drawbacks include high production cost, catalyst and methanol crossover poisoning. This study presents a simple method for Pt-M/C catalyst preparation using a magnetron sputtering (MS) and metal-plasma ion implantation (MPII) technique. The Pt catalysts were sputtered onto a gas diffusion layer (GDL), followed by implanting Cr, Fe, Ni, and Mo catalysts using MPII (accelerating voltage is 20 kV and implantation fluence is 1 × 1016 ions/cm2). The crystallinity and microstructure of the catalyst films were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). The cell performance was tested using potential stat/galvano station. The results indicate that the membrane electrode assembly for Pt-Ni/C, Pt-Fe/C and Pt-Cr/C catalysts can enhance DMFC cell performance, compared with traditional Pt/C and Pt-Ru/C. The maximum Pt-Ni/C power density is 2.4 mW/cm2 with an open circuit voltage (OCV) 0.334 V when tested at a methanol concentration of 1 M.  相似文献   

14.
用磺化聚醚醚酮(SPEEK)替代传统的Nafion膜制备直接甲醇燃料电池(DMFC)用质子交换膜,能降低甲醇渗透率,提高质子导率,从而提高电池性能。介绍了SPEEK膜的制备方法及其缺点,综述了SPEEK膜有机和无机改性的方法,并提出了SPEEK膜多元改性的新设想。  相似文献   

15.
扩散层PTFE载量对被动式直接甲醇燃料电池性能的影响   总被引:1,自引:0,他引:1  
在被动式直接甲醇燃料电池(DMFC)的扩散层中,处理好水、气、电子的通道对电池性能有着十分重要的作用.本研究分别用质量百分比浓度为10%、20%、30%、40%的PTFE乳液进行疏水处理的碳布组装成被动式DMFC以及测试系统.通过稳态电流-电压极化曲线法和交流阻抗法,研究了扩散层中的不同PTFE载量对被动式DMFC电化学性能的影响.研究结果表明,电池开路电压随着阳极扩散层中PTFE载量的增加而上升,电池内阻也随着扩散层中PTFE载量的增加而增加.在阳极,电池性能随着扩散层中PTFE载量的增加而下降,在阴极,用10%PTFE乳液处理的碳布对被动式DMFC性能表现最好.  相似文献   

16.
A novel realization of microtubular direct methanol fuel cells (µ DMFC) with ultrahigh power output is reported by using “rolled‐up” nanotechnology. The microtube (Pt‐RuO2‐RUMT) is prepared by rolling up Ru2O layers coated with magnetron‐sputtered Pt nanoparticles (cat‐NPs). The µ DMFC is fabricated by embedding the tube in a fluidic cell. The footprint of per tube is as small as 1.5 × 10?4 cm2. A power density of ≈257 mW cm?2 is obtained, which is three orders of magnitude higher than the present microsized DFMCs. Atomic layer deposition technique is applied to alleviate the methanol crossover as well as improve stability of the tube, sustaining electrolyte flow for days. A laminar flow driven mechanism is proposed, and the kinetics of the fuel oxidation depends on a linear‐diffusion‐controlled process. The electrocatalytic performance on anode and cathode is studied by scanning both sides of the tube wall as an ex situ working electrode, respectively. This prototype µ DFMC is extremely interesting for integration with micro‐ and nanoelectronics systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号