首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
通过测定海水溶液中硫酸盐还原菌(SRB)生长曲线、溶液状态参数、自腐蚀电位、电化学阻抗谱和极化曲线的变化规律,研究了SRB的存在对X100钢在该体系中的腐蚀行为的影响。结果表明:SRB在海水培养基中的一个生长周期可分为快速生长阶段、稳定阶段和衰亡阶段。溶液S2-浓度和氧化还原电位与SRB数目密切相关,X100钢的自腐蚀电位随时间增加呈现先负移、然后正移、最后负移的变化规律;EIS结果表明,在接菌海水中,X100钢的腐蚀速率随着浸泡时间的增加呈现先增大、后减小、再增大的变化趋势;与灭菌海水中的腐蚀相比,X100钢在接菌海水中的腐蚀电流密度降低,腐蚀减弱,其原因是SRB生物膜的存在阻碍了海水与试样表面的直接接触,从而抑制了金属的腐蚀。  相似文献   

2.
A3钢在庆氧环境中的微生物腐蚀电化学特性研究   总被引:1,自引:0,他引:1  
用交流阻抗法、动电位扫描法研究了A3钢在无菌培养液和培养液加硫酸盐还原菌的厌氧体系中的腐蚀行为。实验结果表明:硫酸盐还原菌(简称SRB)参与了A3钢的电化学行为,在SRB参与的腐蚀过程中,SRB加速A3钢的腐蚀,它对A3钢的阳极极化过程影响很大,而对阴极过程影响很小  相似文献   

3.
A3钢在厌氧环境中的微生物腐蚀电化学特性研究   总被引:1,自引:1,他引:0  
刘建华  杨应广 《材料保护》2000,33(11):32-33
用交流阻抗法、动电位扫描法研究了A3钢在无菌培养液和培养液加硫酸盐还原菌的厌氧体系中的腐蚀行为。实验结果表明:硫酸盐还原菌(简称SRB)参与了A3钢的电化学行为,在SRB参与的腐蚀过程中,SRB加速A3钢的腐蚀,它对A3钢的阳极极化过程影响很大,而对阴极过程影响很小。  相似文献   

4.
针对船用E36钢、10CrNiCu钢,开展了钢的自然腐蚀电位测试、室内全浸加速腐蚀试验。结果表明,10CrNiCu钢具有较高的电位值及较低的平均腐蚀速率,表现出较好的耐海水腐蚀性能;其与E36钢连接时作为阴极受到E36钢的阳极保护,减慢了其腐蚀速率。  相似文献   

5.
硫酸盐还原茵是最重要的生物腐蚀茵,对凝汽器传热管的腐蚀较为严重.采用电化学方法、微生物学方法和表面分析方法,在培养基中就硫酸盐还原茵(简称SRB)对凝汽器传热管材料BFe30-1-1铜合金的腐蚀电化学行为进行了研究.结果表明:SRB的存在使电极自腐蚀电位剧烈负移,腐蚀速率显著增加,极化电阻在细菌生长后期显著降低,在SRB作用下BFe30-1-1铜合金发生了严重点蚀.  相似文献   

6.
测量锌阳极在海泥和含硫酸盐还原菌(SRB)海泥中构成的宏电池中的腐蚀,研究了SRB对海泥中纯锌阳极材料的腐蚀行为的影响.结果表明,SRB能快速破坏纯锌的表面钝化膜,提高锌阳极在海泥中的自腐蚀速率。在含SRB和无SRB海泥构成的宏电池体系中,含菌海泥中的锌试样为电偶对的阳极,腐蚀增大;无菌海泥中的试样为电偶对的阴极,腐蚀受到抑制。  相似文献   

7.
从钢基体与腐蚀产物界面的角度,深入研究了海泥中硫酸盐还原菌对Q235钢的腐蚀行为的影响.结果表明,最初的腐蚀产物为铁的(水合)氧化物,在硫酸盐还原菌代谢活动的影响下,腐蚀产物逐渐向贫硫,以及富硫的铁硫化物转化.后者的晶体缺陷较多且结构疏松,不能阻挡Fe2 的扩散和侵蚀性离子的渗入,导致腐蚀加速.微生物的代谢产物以及腐蚀产物的转变为点蚀的形成和扩展提供了条件,其点蚀的位置一般发生在晶界和珠光体区,并沿晶界或珠光体扩展.  相似文献   

8.
采用失重法和电化学方法研究了铝青铜、Ti80合金和2205不锈钢之间的双金属偶合及三金属偶合体系的电偶腐蚀行为,结果表明,Ti80在海水中的自腐蚀电位为正,耐蚀性好,2205不锈钢次之,铝青铜电位为负。海水全浸条件下,铝青铜分别与Ti80、2205不锈钢组成偶对体系时均作为阳极且腐蚀加速,腐蚀速率约为自腐蚀速率的2倍。对于铝青铜/Ti80/2205不锈钢复杂偶合体系,Ti80作为阴极腐蚀速率没有明显变化,2205不锈钢作为阴极腐蚀则有所减缓,铝青铜作为阳极腐蚀加快。当强阳极铝青铜面积相对减小时,Ti80合金腐蚀仍然没有明显变化,铝青铜腐蚀变快。  相似文献   

9.
通过实验室内埋片实验研究了20#钢在近中性土壤中的腐蚀规律和机理.在三种不同土壤中埋片,对腐蚀后的试样腐蚀形貌和产物进行EDS和XRD分析,并测定了试样的腐蚀速率、自腐蚀电位以及极化曲线随时间的变化关系.结果表明:随着时间的延长,腐蚀速率是不断变化的;3种不同土壤中的钢试样经过相同的腐蚀时间后,1#和2#腐蚀最为严重,3#腐蚀程度稍轻;经过60d腐蚀后,能谱和射线分析其腐蚀产物主要是非晶质、Fe(OH)3和Fe2O3;不同时间和土壤的电位变化规律是不同的,与腐蚀速率变化规律是一致的.最后探讨了腐蚀机理,在近中性土壤中,低碳钢腐蚀的阴极过程主要是氧的还原,在阴极区域形成OH-离子,阳极过程是铁的氧化,氧化后的两价Fe2+发生水合作用,并转化为更稳定的产物Fe(OH)3和Fe2O3.  相似文献   

10.
海泥中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响   总被引:3,自引:0,他引:3  
利用交流阻抗测试技术,扫描电镜及表面能谱、失重法、微生物分析等方法,在室内模拟条件下研究了海泥中硫酸盐还原菌对1Cr13不锈钢腐蚀的影响,及在含和不含硫酸盐还原菌的海泥构成的宏电池腐蚀中1Cr13不锈钢的腐蚀行为。试验结果表明,在有菌泥中1Cr13不锈钢的自然腐蚀速度均大于在灭菌泥中,两相差5.1倍。说明海泥中硫酸盐还原菌增大了1Cr13不锈钢的腐蚀速率。在有菌和灭菌海泥构成宏电池时,有菌海泥中1Cr13不锈钢作为阳极,腐蚀速率比自然腐蚀状态下有所增大,加速率为14.6%。而在灭菌海泥中1Cr13不锈钢作为阴极,腐蚀速率比自然腐蚀状态下有所减小。  相似文献   

11.
为了进一步明确X100管线钢在含硫酸盐还原菌(SRB)海滨盐碱土壤中的耐蚀性,采用表面分析技术、电化学技术和失重法,研究了SRB对X100管线钢腐蚀过程与行为的影响。结果表明:X100管线钢在有无SRB海滨盐碱土壤中的腐蚀均属于中度腐蚀,无SRB时腐蚀产物主要为Fe_2O_3,Fe_3O_4和γ-Fe O(OH),有SRB时腐蚀产物主要为Fe_2O_3,Fe_3O_4,α-Fe O(OH)和Fe7S8;SRB代谢形成的活性生物膜影响了X100管线钢的腐蚀行为,随着腐蚀时间的增加,SRB可在X100管线钢表面形成由微生物膜与腐蚀产物结合的膜,其更加致密,对腐蚀传质具有物理阻碍作用,可以减缓X100管线钢的腐蚀;无SRB菌时X100管线钢表面的腐蚀产物疏松多孔并分布有裂纹,且对基体的保护作用差,其腐蚀速率大于有SRB时的值;SRB的代谢活动抑制了X100管线钢的腐蚀。  相似文献   

12.
海洋硫酸盐还原菌对Q235钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
采用失重法、开路电位、电化学阻抗谱(EIS)、极化曲线等方法,通过在海洋环境中浸泡不同时间对比分析有无硫酸盐还原菌(SRB)条件下Q235钢的腐蚀电化学特征,研究SRB对Q235钢的腐蚀行为的影响。结果表明,在含SRB的海水中,随着浸泡时间延长,Q235钢的腐蚀电流密度先从7.49mA·cm~(-2)增加至9.77mA·cm~(-2),然后逐渐减小至5.01mA·cm~(-2),最终增加至12.6mA·cm~(-2),且始终小于相同时间下无SRB海水中的腐蚀电流密度,表明SRB的存在抑制了Q235的腐蚀。在含SRB的海水中,Q235钢的腐蚀行为主要由Cl~-和生物膜共同影响。在SRB稳定生长阶段,腐蚀以生物膜抑制为主;在SRB指数生长阶段和衰亡阶段,生物膜抑制作用较弱,以Cl~-促进金属腐蚀为主。  相似文献   

13.
对含有SRB海泥中的碳钢的阴极保护的可靠性进行了评价,重点研究了不同保护电位下碳钢的交流阻抗行为,并结合失重法、MPN法细菌计数,得出极化电位、腐蚀速度以及细菌活性之间的关系。3种极化电位下碳钢的腐蚀速度与交流阻抗谱表明,在本试验条件下,碳钢在-950 mV极化电位下受到了较好的保护,腐蚀速度稳定且相对较小。细菌计数表明在较高阴极极化电位下细菌的生长活性与稳定性低于在低电位下的。分析表明,合适的保护电位应该比-950 mV更负。  相似文献   

14.
目前,关于油水体系中微生物的腐蚀形成过程、腐蚀机理、检测和评价手段、影响因素以及腐蚀控制方法等研究尚不成熟。采用失重法、线性极化曲线和电化学阻抗谱技术,结合扫描电子显微镜(SEM)和能谱分析仪(EDS)研究了X70管线钢在含硫酸盐还原菌(SRB)的喷气燃料中的腐蚀行为。结果表明:X70管线钢在无菌介质中的腐蚀类型为局部腐蚀;在有菌介质中腐蚀比较严重,出现大面积溃疡状腐蚀区域并伴有大量鼓泡现象,浸泡初期腐蚀速率最大,随着浸泡时间的延长,腐蚀仍然在进行,但腐蚀速率有所下降,SRB参与并促进了X70管线钢的腐蚀,加速阴极反应,增大了X70管线钢的腐蚀倾向。  相似文献   

15.
土壤中硫酸盐还原菌对1Crl3不锈钢腐蚀的影响   总被引:4,自引:0,他引:4  
利用交流阻抗测试、扫描电镜观测、表面能谱分析、失重法以及微生物分析等方法,研究了硫酸盐还原菌(SRB)对在不同C1^-含量的土壤中的1Crl3不锈钢腐蚀的影响.结果表明:随着土壤中C1^-含量的增大,1Crl3不锈钢的腐蚀速率和最大点蚀深度随着土壤中C1^-含量的增加而增大,当C1^-的含量增大到1.0%时达到最大值.与灭菌土壤相比,在接菌土壤中1Crl3不锈钢腐蚀速率和最大点蚀深度大,说明硫酸盐还原菌和C1^-的共同作用增大了土壤中1Crl3不锈钢的点蚀敏感性.1Crl3不锈钢未发生点蚀时阻抗图谱表现为单容抗弧,发生点蚀时阻抗图谱表现为有两个时间常数的双容抗弧.  相似文献   

16.
The systematic laboratory studies on the roles of sulfate-reducing bacteria(SRB) in the stress corrosion cracking(SCC) susceptibility of X80 steel subjected to cathodic potential have been conducted in a nearneutral pH soil solution by slow strain rate tests.The cathodic potential and SRB increase individually the SCC susceptibility of the steel in the soil solution.The positive role of the SRB activities in SCC susceptibility depends on the prolongation of pre-incubation time,and the SCC susceptibility of the steel increases under more negative potentials.What’s more,the applied potentials and the presence of SRB work together in promoting the SCC susceptibility of the steel.But,the combined action becomes limited with decreasing cathodic potentials.The relationships between the plasticity loss and the permeable hydrogen concentration were established for the steel in the soil solution,regardless of under open circuit potential or cathodic potentials,in both the sterile and SRB inoculated conditions.The relationships are practically significant for the selection of safe cathodic protection(CP) potentials in the presence of SRB in soil environment.  相似文献   

17.
Abstract

The stress corrosion cracking (SCC) and hydrogen embrittlement cracking (HEC) characteristics of welded weathering steel and carbon steel were investigated in aerated acid chloride solution. The electrochemical properties of welded steels were investigated by polarisation and galvanic corrosion tests. Neither weathering steel nor carbon steel showed passive behaviour in this acid chloride solution. The results indicated that weathering steel had better corrosion resistance than carbon steel. Galvanic corrosion between the weldment and the base metal was not observed in the case of weathering steel because the base metal was anodic to the weldment. However, the carbon steel was susceptible to galvanic corrosion because the weldment acts as an anode. Slow strain rate tests (SSRT) were conducted at a constant strain rate of 7.87 × 107 s-1 at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials, to investigate the SCC and HEC properties in acid chloride solution. The welded weathering steel and carbon steel were susceptible to both anodic dissolution SCC and hydrogen evolution HEC. However, weathering steel showed less susceptibility of SCC and HEC than carbon steel at anodic potential because of Cr and Cu compounds in the rust layer, which retarded anodic dissolution, and at cathodic potential due to the presence of Cr, Cu, and Ni in alloy elements, which inhibit the reduction of hydrogen ions. SEM fractographs of both steels revealed a quasicleavage fracture in the embrittled region at applied anodic and cathodic potentials.  相似文献   

18.
Pitting corrosion behavior of stainless steel 316L in the presence of aerobic and anaerobic bacteria isolated from cooling water system in oil refinery was investigated using open circuit potential measurement, electrochemically impedance spectroscopy, scanning electron microscopy examinations, and energy dispersive spectrum analysis. The results show the corrosion potential (E cor) and polarization resistance (R p) decrease in the presence of sulfate-reducing bacteria (SRB), iron-oxidizing bacteria (IOB), and a combination of SRB and IOB, in comparison with those observed in the sterile medium for the same exposure time. The presence of SRB demonstrated higher corrosion rates than IOB. The combination of SRB and IOB created the highest corrosion rate. The metabolic activity of bacteria and the integrality and compactness of biofilm influenced the pitting corrosion process, increased the corrosion damage degree of the passive film, and accelerated the pitting corrosion. It is suggested that SRB and IOB in influencing the pitting corrosion of 316L SS is highlighted. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号