首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
对采用CO2 和烷烃 (R2 90、R6 0 0a、R6 0 0 )组成的混合工质的自动复迭制冷系统应用于普冷领域进行了理论分析。研究了在CO2 作为低沸点工质时 ,高沸点工质和中沸点工质对系统压比和性能系数COP的影响 ,以及这些性能参数随系统中CO2 摩尔含量的变化情况。  相似文献   

2.
非共沸混合工质冷凝是温度不断降低的等压冷凝过程,气相和液相组分不断变化。当冷凝器出口温度为300 K时,液相混合工质R600a/R23/R14的质量分数为78.04/12.62/9.34,冷凝液大部分为R600a,但含有相当数量的中低沸点工质。冷凝温度降低至280 K时,R600a在气相中的比例为9.8%,即使冷凝温度降低到质量分数35/35/30的泡点温度249.49 K,R600a在气相的质量分数仍然占2.67%。相分离器I能够分离78.04%的高沸点工质R600a,但低沸点工质R14在液相中占9.34%。相分离器II只能分离30.27%的R23,12.62%依靠相分离器I分离,其余的R23都被带入到蒸发器。R600a在蒸发器内仍然有6.31%的含量,低沸点工质R14在蒸发器内占45.64%。  相似文献   

3.
混合工质在不同位置的泄漏所引起的系统中工质对组分比例发生变化会对制冷系统的性能产生很大影响。根据混合法则,从理论上研究R290/R600a工质对泄漏率在5%~40%范围内8种泄漏率条件下,系统工质对组分变化的规律。按照理论计算的要求建立制冷系统工质泄漏实验台,对实验台在4种泄漏率条件下的蒸发压力、冷凝压力、制冷量和COP进行研究。计算和实验结果表明,在蒸发器出口和冷凝器入口处的泄漏使低沸点组分R290在工质对中的比例增大,系统制冷量增加且COP下降;在蒸发器入口和冷凝器出口处的泄漏使高沸点组分R600a在工质对中的比例增大,系统制冷量下降且COP上升。  相似文献   

4.
由上海交通大学丁国良教授、张春路副教授等编著的《制冷空调新工质-热物理性质的计算方法与实用图表》已由上海交通大学出版社出版。本书所选工质包含了原CFC工质的主要替代物,包括R134a、R152a等HFC类纯工质,R600a、R290、CO2等自然工质,以及R407C、R410A等混合工质。本书内容包括两大部分:(1)  相似文献   

5.
为解决自然工质R290/CO2复叠式制冷循环COP较低的问题,提出采用过热、过冷和用膨胀机代替节流阀的方法。通过热力学分析对比得出,用膨胀机代替节流阀同时过冷的方法可以大大提高R290/CO2复叠式制冷循环的COP。自然工质R290/CO2复叠式制冷循环替代常规工质有很好的前景。  相似文献   

6.
在设定工况条件下,采用3组CO2非共沸混合工质(R744/R22、R744/R1270、R744/R600a).对制冷系统进行了热力学理论分析和计算.研究了系统制冷量、压缩机功耗、制冷COP,和冷凝压力随CO2质量配比的变化关系.结果表明:在相同工况下,R744/R600a的冷凝压力最低,比R744/R22平均低22.9%,比R744/R1270平均低18.8%;R744/R1270具有较好的综合性能.  相似文献   

7.
提出一种新型水冷自复叠制冷循环方式,用冷凝分离器代替传统循环的冷凝器和相分离器,在冷凝分离器中同时完成了高沸点工质的冷凝及高沸点工质与低沸点工质的分离。对采用这种冷凝分离器的水冷自复叠制冷循环方式的R22/R23、R290/R170、R134a/R23、R134a/R170四种工质对进行了循环特性研究。在自行搭建的水冷自复叠制冷系统实验台上进行了R22/R23、R134a/R23两种工质对的实验研究。结果表明,在相同工况下,R22/R23自复叠制冷系统的COP要高于R134a/R23自复叠制冷系统;和传统的自复叠系统相比,采用冷凝分离器的水冷自复叠制冷循环COP明显提高,提升率达到60%~100%。  相似文献   

8.
R290/CO2复叠式制冷系统的性能实验   总被引:3,自引:0,他引:3  
通过对R290/C02复叠式制冷系统的性能实验,对低温循环用CO2作为制冷工质,高温循环分别用R22和R290为制冷工质的性能进行比较,结果表明,随着蒸发温度的升高,冷凝温度的降低,R290/CO2复叠式制冷系统的最佳质量流量比增大,COP增加。随着高温循环压缩机入口温度的升高,R290压缩机的功耗略高于R22压缩机的功耗,R290循环的COPh要高于R22循环的COPh。结果表明自然工质R290/CO2复叠式制冷系统具有很好的发展前景。  相似文献   

9.
宁静红  彭苗  李慧宇 《制冷》2006,25(1):57-59
介绍了一种新型自然工质R290/CO2复叠式超市制冷系统,分析了R290/CO2复叠式制冷循环用于超市制冷系统的原理、能效等问题,环保R290/CO2复叠式超市制冷系统有着很好的应用前景。  相似文献   

10.
对自然工质CO2的热力性质、循环特性进行分析研究,以求进一步完善R744循环,以替代CFCs和HCFCs制冷工质。  相似文献   

11.
Although application of carbon dioxide as working fluid in many fields of refrigeration technology has been recommended very often in the recent past, the data on nucleate boiling heat transfer of carbon dioxide in free convection are very scarce in the open literature and new investigations are almost entirely focussed on forced convective flow boiling. In the interpretation of the respective results, heat transfer to carbon dioxide is often characterized as being superior to other refrigerants due to the outstandingly favourable thermophysical properties of carbon dioxide for boiling heat transfer. Different from this view, the discussion of recent results on pool boiling heat transfer of carbon dioxide in this review demonstrates that the high heat transfer coefficients measured for carbon dioxide in comparison to hydrocarbon or halocarbon refrigerants are mainly due to the fact that application of carbon dioxide is mostly envisaged for conditions where reduced saturation pressure p*=ps/pc (pc, critical pressure) is higher than for common refrigerants.

In the first part of the review, the three main influences—by heat flux, saturation pressure and fluid properties—on pool boiling of carbon dioxide are discussed using recent measurements for CO2 by Kotthoff et al. [S. Kotthoff, U. Chandra, D. Gorenflo, A. Luke, New measurements of pool boiling heat transfer for carbon dioxide in a wide temperature range, Proceedings of the Sixth IIR-Gustav Lorentzen Conference, Glasgow, 2004 [paper 2/A/3.30]; see also S. Kotthoff, U. Chandra, D. Gorenflo, Neue Messungen zum Behältersieden von Kohlendioxid in einem grösseren Temperaturbereich, DKV-Tagungsbericht 22 (2004) [Bd.II. 1] 233–256 and other organic substances (Gorenflo et al.) [D. Gorenflo, S. Kotthoff, U. Chandra, New measurements of pool boiling heat transfer with hydrocarbons and other organics for update of VDI—Heat Atlas calculation method, Proceedings of the Sixth IIR-Gustav Lorentzen Conference, Glasgow, 2004 [paper 1/C/1.00]; Kotthoff and Gorenflo, [S. Kotthoff, D. Gorenflo, Influence of the fluid on pool boiling heat transfer of refrigerants and other organic substances, Proceedings of the IIR-Commission B1 Conference, Vicenza, 2005 [paper #TP-98]. In the second part, a comparison is given with the few former data available and with new results of Loebl and Kraus [S. Loebl, W.E. Kraus, Pool boiling heat transfer of carbon dioxide on a horizontal tube, Proceedings of the Sixth IIR-Gustav Lorentzen Conference, Glasgow, 2004 [paper 1/A/1.20]; S. Loebl, W.E. Kraus, Zum Wärmeübergang bei der Verdampfung von Kohlendioxid am horizontalen Rohr, DKV-Tagungsbericht 22 (2004) [Bd.II.1] 219–232 on the influence of the heating wall (material and surface roughness). Finally, analogies between nucleate pool boiling and new flow boiling data are shown for those domains of flow boiling in which nucleation provides the dominant contribution to heat transfer and convective effects are of secondary importance.  相似文献   


12.
两级复叠低温制冷机组制冷剂的替代   总被引:2,自引:0,他引:2  
对应用于两级复叠制冷的工质对R22/R13及其替代物R404A/R23的基本物性参数进行了分析对比,针对采用替代制冷剂后制冷系统在设计中需要注意的一些问题进行了探讨.通过实验测试,对复叠制冷系统在采用两种不同工质对后的压比、制冷量及COP等循环性能进行了比较,结果证明,采用R404A/R23作为替代制冷剂是可行的.  相似文献   

13.
The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility of keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.

Résumé

The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility in keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.  相似文献   


14.
A comprehensive review of flow boiling characteristics and flow pattern visualization of refrigerant/lubricant oil mixtures is presented in this paper. First, various parameters influenced by the lubricant oil in convective boiling of refrigerants, such as mass velocity, vapor quality, oil concentration and geometric characteristics of the heat transfer tube are discussed. The effects of the unavoidable introduction of the lubricant oil on the thermodynamics properties of a refrigerant are described. Then, a review of the main experimental studies of flow boiling of refrigerant/lubricant oil mixtures is presented and also describes research with halocarbons, carbon dioxide, hydrocarbons and ammonia. There is no agreement among these studies regarding the effect of the oil in the evaporator, with studies showing an increase or decrease in the heat transfer coefficient. However, in relation to pressure drop, all the results presented the same trend, increasing the pressure drop with increasing oil concentration. Next, the flow patterns of refrigerant/oil mixtures are illustrated together with a selection of video images. It is possible to notice the difference in frothing formation with respect to the particular refrigerant and tube geometry. Some predictions of oil effects on the heat transfer coefficient and pressure drops based on the mixture physical properties are then presented and the trends compared to data. Finally, some suggestions for future work are given.  相似文献   

15.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

16.
Nucleate boiling heat transfer coefficients (HTCs) of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), and dimethylether (RE170) on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accommodate high vapor pressure refrigerants such as propylene and propane with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 kW m−2 to 10 kW m−2 with an interval of 10 kW m−2 in the pool temperature of 7 °C. Test results exhibited a typical trend that HTCs of flammable refrigerants increase with increasing vapor pressure. Existing nucleate boiling heat transfer correlations showed up to 80% deviation as compared to the present data. Hence a new correlation was developed through a regression analysis taking into account dimensionless variables affecting nucleate boiling heat transfer. The new correlation showed a good agreement with data for flammable refrigerants as well as halogenated refrigerants with a deviation of 5.3%.  相似文献   

17.
We have extended our previous work on the equation of state for refrigerants to their mixtures successfully. The temperature-dependent parameters of the equation of state have been calculated using our previous corresponding-states correlation based on the normal boiling point temperature and the liquid density at the normal boiling point. We have applied a simple combining rule for the normal boiling point constants to extend our previously proposed equation of state to mixtures of refrigerants. In this work the liquid densities of a large number of refrigerant mixtures have been calculated and the results are compared both with experimental data and a recent correlation by Nasrifar et al. (1999). The agreement is good.  相似文献   

18.
In this study, an improved cooling cycle for a conventional multi-evaporators simple compression system utilizing ejector for vapour precompression is analyzed. The ejector-enhanced refrigeration cycle consists of multi-evaporators that operate at different pressure and temperature levels. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant-area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated. The comparison between the novel and conventional system was made under the same operating conditions. Also, a comparison of the system performances with environment friendly refrigerants (R290, R600a, R717, R134a, R152a, and R141b) is made. The theoretical results show that the COP of the novel cycle is better than the conventional system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号