首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成膨胀阻燃体系(IFR),同时为提高抑烟性能将一定量蒙脱土(MMT)引入阻燃体系中。将此体系应用到环氧树脂(EP)的阻燃改性中,以间苯二胺(m-PDA)为固化剂制得阻燃改性EP材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG/DTG)、锥形量热(CONE)和扫描电镜(SEM)分别探究了材料的阻燃性能、热降解行为、燃烧行为以及微观形貌。结果表明:5%IFR+1%MMT(wt,质量分数,下同)的阻燃剂可使EP达到UL 94V-0级;10%IFR+1%MMT可将极限氧指数提高到29.2%;同时,改性EP的燃烧性能得到很大提高,平均热释放速率(AvHRR)下降了52.0%,热释放速率峰值(PkHRR)下降了33.2%,总烟产生量(TSP)下降了70.0%;炭层形态研究显示,改性后的EP燃烧后能形成致密、封闭的炭层,能有效阻碍热量释放与烟雾扩散。  相似文献   

2.
研究了聚磷酸铵(APP)以及APP两种微胶囊,即环氧树脂包覆的APP(EPAPP)和密胺甲醛树脂包覆的APP(MFAPP)在环氧树脂(EP)中阻燃性能、力学性能以及阻燃剂与EP之间的相容性。结果表明,APP在EP中具有较好阻燃效果。与未包覆的APP相比,环氧树脂和密胺甲醛树脂包覆APP(EPAPP和MFAPP)在环氧树脂(EP)中氧指数和垂直燃烧级别基本不变;但添加APP微胶囊的阻燃EP体系的力学性能都有所改善,尤其是冲击强度有较大幅度提高。表面电阻的实验发现,在EP体系中添加APP或APP微胶囊对体系绝缘性能基本上没有影响。  相似文献   

3.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、磷腈为基础单元合成阻燃剂六(4-DOPO羟甲基苯氧基)环三磷(DOPOMPC),将其与聚磷酸铵(APP)复配添加至环氧树脂(EP)制备出阻燃复合材料(DOPOMPC/APP/EP)。为进一步提高阻燃环氧树脂的阻燃及力学性能,添加不同质量分数的蒙脱土(MMT)制出新型阻燃环氧树脂材料(DOPOMPC/APP/MMT/EP)。通过极限氧指数(LOI)、水平燃烧、锥形量热、扫描电子显微镜观察等方法研究了蒙脱土与DOPOMPC的协同效应。实验结果表明,EP4(10%DOPOMPC/10%APP/3%MMT/77%EP)各项燃烧参数得到了最佳改善,复合材料综合表现最优。其中LOI值达到38.2%;热释放速率峰值较未经MMT处理的阻燃复合材料EP1(10%DOPOMPC/10%APP/EP)下降了29.1%;比消光面积平均值和一氧化碳释放率平均值分别降低了72.7%和65.5%;火势增长指数、发烟指数和毒性气体生成速率指数较EP1降幅分别达到38.2%、13.1%和34.0%;拉伸强度、弯曲强度和冲击强度比EP1分别提高了25.4%、12.7%和1.97倍,呈现出良好的阻燃、抑烟、抑毒性能。炭层宏观和微观形貌表明,添加MMT的阻燃材料在燃烧初期能够形成更致密、坚硬的优质炭层。  相似文献   

4.
以锡酸钠和硝酸锶为原料,制备了花簇状羟基锡酸锶(SrSn(OH)_6);将其添加到软聚氯乙烯(PVC)中,采用极限氧指数仪、烟密度等级测试仪、拉伸仪和热重分析仪研究了其对软PVC的阻燃、抑烟、拉伸和热降解性能的影响,并通过能谱分析、X射线衍射和扫描电镜对烟密度等级测试后残炭的组成及形貌进行表征。结果表明,SrSn(OH)_6对软PVC具有较好的阻燃和抑烟性能,对其拉伸性能的影响较小;当其添加量为10 g/100 g PVC时,其对应的阻燃软PVC具有最好的阻燃、消烟和拉伸性能;SrSn(OH)_6能促使软PVC燃烧时迅速脱出HCl并交联形成内部具有封闭孔的,外表面致密的膨胀炭层。  相似文献   

5.
应用聚磷酸铵(APP)对苯并噁嗪(BOZ)树脂及玻璃纤维(GF)/BOZ复合材料进行了阻燃改性,结合热分析和微观形貌分析等研究了材料的阻燃机制。结果表明:APP可以明显提高BOZ树脂的阻燃性能,随APP含量的提高,树脂体系的极限氧指数逐渐提高,添加量为3wt%时可使BOZ树脂的极限氧指数从基体的31.5%提高到34.5%,并达到UL 94V-0级。APP的加入使改性树脂体系的分解温度前移,玻璃化转变温度略有下降,改性树脂体系固化反应提前,反应过程变得缓和。APP的加入使GF/BOZ复合材料的阻燃性能进一步提高,10wt%GF/APP-BOZ复合材料的极限氧指数从GF/BOZ的51.0%提高到57.7%。微观形貌分析表明:APP的加入使APP-BOZ改性树脂及GF/APP-BOZ复合材料燃烧后生成更为致密的炭层,从而使材料的阻燃性能得到提高。  相似文献   

6.
将硼-氮阻燃剂2,4,6-三(4-硼酸-2-噻吩)-1,3,5-三嗪(3TT-3BA)与Mg(OH)_2进行复配,然后将其添加到环氧树脂(EP)中,通过热重分析、锥形量热、极限氧指数、垂直燃烧等测试方法,研究了3TT-BA/Mg(OH)_2复配体系对EP的阻燃性能。研究发现,3TT-3BA与Mg(OH)_2具有协同阻燃作用,添加10%3TT-3BA/10%Mg(OH)_2到EP中,其极限氧指数达到了32.5%,垂直燃烧达到了UL94 V-0等级。同时,3TT-BA/Mg(OH)_2复配体系还能有效减小EP热释放速率、热释放总量和生烟总量。通过扫描电镜等手段探讨了3TT-BA/Mg(OH)_2复配体系的阻燃机理。  相似文献   

7.
采用改性炭黑(M-CB)、膨胀石墨(EG)、聚磷酸铵(APP)三者复合与木粉及聚丙烯(PP)制备阻燃抗静电木塑复合材料。通过ZC-36型高阻计、JF-3型氧指数测定仪、CZF-3水平垂直燃烧测定仪、锥形量热仪、热重分析(TGA)测定复合材料的表面电阻率、氧指数及燃烧性能、阻燃性能、热失重行为。研究结果表明M-CB有良好的导电性能,可以使材料表面电阻率由约1014Ω降低到约108Ω;锥形量热及氧指数结果等表明M-CB/EG/APP三者复合阻燃体系的阻燃性能优于单一组分,同时TGA结果表明样品材料热稳定性能高于单一阻燃体系,残炭量显著提高,可以保护PP,使PP分解温度上升。  相似文献   

8.
通过纳米复合的方式,将微胶囊化的膨胀型阻燃体系—聚磷酸铵(APP)-季戊四醇(PER)与有机改性的片层蒙脱土(OMMT)用于协效阻燃乙烯-醋酸乙烯共聚物(EVA)。采用XRD、TEM、TGA、极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪、烟密度和动态机械热分析对微胶囊化APP(MCAPP)-微胶囊化PER(MCPER)-OMMT/EVA复合材料的结构与性能进行研究。研究结果表明,OMMT被完全剥离开,并以层离或插层的状态分散在EVA中;MCAPP-MCPER与OMMT之间存在明显的协效阻燃作用,用3wt%OMMT代替MCAPP-MCPER后,MCAPP-MCPER-OMMT/EVA复合材料的LOI值从25.5vol%提高到29.5vol%,垂直燃烧结果由V-2上升到V-0级别,残炭量也由14.5wt%增大到15.9wt%,烟密度由154.7 g/s降低到97.5 g/s,材料的阻燃性能得到有效提高。此外,万能拉伸测试及动态机械热分析测试表明,通过纳米复合制备的阻燃MCAPP-MCPER-OMMT/EVA复合材料具有更好的力学和动态热机械性能。   相似文献   

9.
采用聚磷酸铵(APP)与纳米SiO_2阻燃水稻秸秆/高密度聚乙烯(HDPE)木塑复合材料,通过力学性能、极限氧指数、垂直燃烧、热重分析(TGA)和扫描电镜等研究了复合材料的界面,力学,阻燃性能及热降解行为。研究结果表明,当添加17%(wt,质量分数,下同)的APP与3%的纳米SiO_2时达到V-0级,极限氧指数提高了30.8%。拉伸强度提高了42.8%,弯曲强度提高51.9%,冲击强度提高了73.9%。TGA与SEM研究表明,APP与纳米SiO_2对木塑复合材料具有阻燃协效效应,APP使秸秆粉碳化同时膨胀发泡,纳米SiO_2加固炭层是阻燃的主要原因。  相似文献   

10.
以正硅酸四乙酯(TEOS)和乙烯基三乙氧基硅烷(A-151)对聚磷酸铵(APP)和三聚氰胺尿酸盐(MCA)进行改性,制备了Si-MAPP和Si-MMCA,解决了APP和MCA疏水性差的问题。将Si-MAPP和Si-MMCA与双季戊四醇(DPER)复配得到一种新的膨胀型阻燃剂(IFR)并用于LDPE阻燃。利用红外光谱、扫描电子显微镜和热重分析证明了APP和MCA成功被TEOS和A-151涂层修饰。采用万能材料试验机、极限氧指数仪、UL-94垂直燃烧试验和锥形量热试验测试了LDPE复合材料的阻燃性能。研究结果表明,经TEOS和A-151涂层修饰后,Si-MAPP和Si-MMCA疏水性能优异,与LDPE相容性好。加入含Si-MAPP/DPER/Si-MMCA的IFR大幅提高了LDPE复合材料的阻燃性。当加入质量分数43.75%的Si-MAPP/DPER/Si-MMCA后,复合材料极限氧指数为30.3%并达到V-0级别,拉伸强度达12.92MPa,比同比例无Si-MMCA的LDPE/IFR高出了3.79%,比质量分数为41.6%无Si-MAPP的LDPE/IFR高出了6.81%。烟密度试验表明...  相似文献   

11.
将无卤膨胀阻燃剂六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)、聚磷酸铵(APP)及多壁碳纳米管(MWCNTs)复配后加入环氧树脂(EP)中,制备出新型阻燃复合材料DOPOMPC-APP-MWCNTs/EP。通过极限氧指数(LOI)、水平垂直燃烧和锥形量热法研究其阻燃性能。研究结果表明:MWCNTs的加入增强了膨胀阻燃体系的阻燃性能和力学性能,并在一定程度上改善了体系燃烧时的浓烟现象。当阻燃体系总质量分数为20%,MWCNTs质量分数为2%时,材料性能最优,其LOI达到36.8%,热释放速率峰值、有效燃烧热平均值、比消光面积平均值和CO释放率平均值与未阻燃EP相比分别下降了83.5%、31.5%、47.6%、50.0%,与DOPOMPCAPP/EP相比下降了83.5%、77.7%、83.7%、68.9%。SEM分析表明:添加MWCNTs后,燃烧炭层呈现出大面积交联网络状结构。  相似文献   

12.
In order to improve the compressibility of fine zirconia and alumina powders, powders were surface-treated with aluminate, silane and titanate coupling agents. The surface modification reduced both powder/powder friction and powder/die-wall friction, which increased the density of the compacts. At 2% additions, the effectiveness of the coupling agents on density increase was in the order, silane > titanate > aluminate. In zirconia systems with different titanate concentrations it was found the optimum amount of coupling agent could be approximated by the amount required for monolayer coverage on the powder surface.  相似文献   

13.
环氧树脂/聚磷酸铵复合材料的阻燃性能与热降解行为   总被引:1,自引:0,他引:1  
利用环氧树脂(EP)成炭能力,引入聚磷酸铵(APP)以提高其阻燃性能。当APP质量分数为9%时,EP/APP氧指数达30.5%,垂直燃烧性能通过V-0级。相比EP,EP/APP的热释放峰值与总热释放均有所下降。此外,利用热失重-红外联用设备研究了EP以及EP/APP的热降解行为并解释相关机理:EP在高温下会释放CO、甲醇等易燃性气体,剧烈燃烧并放出大量的热;APP在低温阶段的热裂解产物会催化EP的降解,但在高温下EP/APP却有热稳定性优异的炭层形成,在火灾中此炭层会覆盖在基体表面保护下部材料以免其遭到进一步的破坏。  相似文献   

14.
为了在环氧树脂(EP)复合材料中改善碳纳米管(CNTs)的分散性和获得优良的界面特性,利用Fenton试剂对CNTs进行了羟基化处理,然后分别利用硅烷偶联剂KH550、KH560、KH570和钛酸酯偶联剂NDZ201对羟基化CNTs进行表面修饰,通过SEM、TGA、DSC和阻抗分析仪研究偶联剂修饰对CNTs/EP复合材料性能的影响。实验结果表明:Fenton试剂和4种偶联剂修饰都能显著改善CNTs在复合材料中的分散性,提高EP的玻璃化温度(Tg)和热稳定性,其中偶联剂修饰比Fenton试剂处理更有效;然而这些改性却大幅度降低了复合材料的导电性能、介电常数以及介电损耗。4种偶联剂中,KH560对应的复合材料的Tg最高,热稳定性和导电性能最好,同时具有较高的介电常数和较低的介电损耗。  相似文献   

15.
张琪  刘娟  桑晓明  闫莉 《材料工程》2017,(11):23-29
采用聚酰亚胺(PI)预聚法,以高岭土(Kaolin,KL)和聚磷酸铵(APP)为阻燃剂,合成KL/APP阻燃硬质聚氨酯-酰亚胺(PUI)泡沫塑料。分析KL/APP的添加量和配比对氧指数、烟密度、炭层形貌、表观密度及力学性能的影响。结果表明:随着KL/APP复配阻燃剂添加量的增加,硬质PUI泡沫塑料的氧指数、表观密度、压缩强度、压缩模量以及表面粉化程度均增加,且密度指数分别为1.999和1.764;烟密度随着KL含量的增大而减小,KL/APP阻燃剂能改善泡沫炭层疏松多孔的缺点。  相似文献   

16.
以六氯环三磷腈(HCCP)、4,4'-二羟基二苯硫醚(TDP)为原料合成了一种环交联型的聚磷腈(PTP)微纳米球,并将其加入到环氧树脂(EP)中制备成PTP微纳米球/EP(PTP/EP)复合材料,研究其阻燃性能。采用FTIR和SEM对PTP微纳米球进行表征;TG分析考察PTP/EP复合材料的热稳定性;极限氧指数(LOI)和锥型量热分析(CONE)对PTP/EP复合材料进行阻燃性能测试。研究结果表明,PTP微纳米球具有不溶不熔的特性,粒径在500 nm~3 μm之间,且拥有优异的热稳定性和成炭性,起始热分解温度高达453.2℃,800℃残炭为74.3%。PTP微球的加入显著提高了EP的阻燃性能。当PTP微纳米球添加量仅为5wt%时,PTP/EP的热释放速率峰值降低了55.43%;LOI值从纯EP的25.6%提高到了30.4%。PTP微球的加入还提高了EP的力学性能。PTP微纳米球因其不溶不熔的特点在EP中充当增强剂,在受热燃烧时充当高效的阻燃剂。本研究为功能性阻燃剂的研发提供了新思路。  相似文献   

17.
将自制含磷木质素基成炭剂(Lig-P)和聚磷酸铵(APP)复配用于制备阻燃聚乳酸(PLA)基复合材料,考察了协效阻燃剂有机蒙脱土(OMMT)对阻燃PLA性能的影响。采用极限氧指数(LOI)仪、垂直燃烧(UL-94)测试仪、锥形量热仪、热失重分析仪分别对Lig-P-APP-OMMT/PLA阻燃复合材料的阻燃性能、热稳定性能和燃烧行为进行了研究。结果发现,OMMT与Lig-P-APP存在明显的协同阻燃作用,当OMMT替代3wt%的Lig-P-APP时,Lig-P-APP-OMMT/PLA阻燃复合材料的LOI由27%增加至32%,UL-94等级由V1级提高至V0级;且Lig-P-APP-OMMT/PLA阻燃复合材料的最大热降解速率有所降低,800℃的残炭量提高了将近50%;此外,OMMT的引入使PLA阻燃复合材料的热释放速率明显降低,热释放速率峰值(PHRR)、烟释放速率峰值(PSPR)及总烟释放量(TSR)分别降低了26.4%、60%及26.3%。OMMT可明显提高阻燃PLA炭层的致密度及石墨化程度。  相似文献   

18.
不同偶联剂改性PTW对PP/GF复合材料性能的影响   总被引:7,自引:6,他引:1  
目的研究六钛酸钾晶须表面改性对聚丙烯复合材料的力学性能影响,以探索最佳表面改性手段。方法分别采用硅烷偶联剂KH550、KH570、正十二烷基三甲氧基硅烷,钛酸酯偶联剂NDE311、改性六钛酸钾晶须(PTW),然后将改性过的六钛酸钾晶须、玻璃纤维、聚丙烯通过熔融共混制得聚PP/GF/PTW复合材料。结果比较六钛酸钾晶须经不同偶联剂改性前后对聚丙烯/玻璃纤维复合材料性能的影响,发现改性过的六钛酸钾晶须可改善复合材料的力学性能。比较不同偶联剂改性六钛酸钾晶须对聚丙烯/玻璃纤维复合材料性能的影响,发现经KH550偶联剂处理后,与未改性相比,复合材料的弯曲性能提高了58.63%,拉伸性能提高了16.07%,冲击性能提高了63.1%。结论六钛酸钾晶须经KH550偶联剂处理后,复合材料的综合性能最好。  相似文献   

19.
SPTW对聚丙烯复合材料力学性能的影响   总被引:3,自引:2,他引:1  
张峻岭  魏风军 《包装工程》2016,37(13):14-18
目的研究六钛酸钾晶须添加量的不同对聚丙烯复合材料力学性能的影响。方法采用硅烷偶联剂KH550改性六钛酸钾晶须(SPTW),利用熔融共混法,将改性过的六钛酸钾晶须与聚丙烯(PP)、马来酸酐接枝聚丙烯(PP-g-MAH)熔融共混制得PP/PP-g-MAH/SPTW复合材料。结果比较不同含量的六钛酸钾晶须对复合材料力学性能的影响,发现添加适量改性过的六钛酸钾晶须可明显改善复合材料的力学性能。随着六钛酸钾含量的不断增加,其弯曲强度也增大,当SPTW的质量分数为12%时,弯曲强度提高了21.5%,随着含量的继续增加,弯曲强度开始下降;其拉伸强度和冲击强度都呈先增加后降低的趋势,在SPTW质量分数为8.3%左右时,其拉伸强度和冲击强度分别提高了19.7%和31.8%。结论在聚丙烯中添加经硅烷偶联剂KH550改性的SPTW,其质量分数为12%时,力学性能最佳。  相似文献   

20.
本文以DOPO衍生物六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)、聚磷酸铵(APP)以及三聚氰胺(MEL)形成复配膨胀体系(IFR)阻燃环氧树脂.采用极限氧指数(LOI)、水平、垂直燃烧(UL-94)方法研究了IFR体系对环氧树脂体系阻燃性能影响,通过锥形量热(CONE)研究了体系燃烧特性,通过扫描电子显微镜(SEM)对体系成炭情况进行观察.结果表明,IFR膨胀阻燃体系对环氧树脂具有良好的协同阻燃作用,其中8%DOPOMPC/8%APP/4%MEL(EP3)体系LOI值较纯EP(EP0)提高37.8%;各项燃烧参数也得到了改善,热释放速率峰值(pk-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)及一氧化碳释放速率平均值(av-CO)相对于10%DOPOMPC/10%APP/EP(EP1)分别降低了53.8%、84.4%、57.7%和75.8%;拉伸强度、弯曲强度和冲击强度较EP1分别提高了1.3倍、79.4%和2.5倍;宏观拍摄和扫描电镜结果表明EP3膨胀炭层连续、均匀、致密,阻燃效果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号