首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
利用EBSD技术对比分析了升温速率对冷轧超薄取向硅钢再结晶行为的影响.结果表明,冷轧超薄带中再结晶形核位置、再结晶织构类型受升温速率的影响不大,主要取决于形变组织;剪切带、{111}〈112〉取向晶粒晶界、形变带和形变不均匀区均为再结晶的形核位置,剪切带的再结晶形核优势更为明显;再结晶晶粒取向以Goss({110}〈001〉)取向为主,同时存在{210}〈001〉、{310}〈001〉以及一定比例的杂乱取向.然而,升温速率显著影响Goss织构的强度及退火样品的组织均匀性;慢速升温条件下,Goss织构比例和锋锐度降低,说明回复导致不同织构的形变组织储存能差异减小,降低了Goss取向的形核优势;快速升温条件下,剪切带内的Goss晶核具有更大的形核优势,吞并临近的形变组织完成再结晶,形成更强和锋锐的Goss织构.此外,快速升温可提高再结晶完成后的组织均匀性、降低平均晶粒尺寸.  相似文献   

2.
低碳钢热变形过程中铁素体的织构形成规律   总被引:2,自引:0,他引:2  
利用背散射电子衍射取向成像技术定量分析了热模拟单向压缩条件下Q235碳素钢热变形时铁素体的织构形成规律。结果表明,在710℃纯铁素体热压缩过程中,形成〈100〉和〈111〉方向的线织构。〈111〉方向织构增强的速度较快,到应变为1.0时达最大值,然后随应变的加大而减弱;〈100〉方向织构在形变量较小时增强的速度较慢,在大应变时增强的速度很快。大应变时虽导致一定程度的动态再结晶,使铁素体晶粒细化,但组织不均匀,织构过强,造成强烈的各向异性。在奥氏体与铁素体两相区变形时,先共析铁素体因形变同样产生强烈的织构。随着形变温度的提高和先共析铁素体的减少,织构减弱。  相似文献   

3.
低碳钢形变强化相变时铁素体织构类型的分析   总被引:2,自引:0,他引:2  
利用背散射电子衍射取向成像技术分析了在热模拟单向压缩条件下Q235碳素钢形变强化相变时铁素体织构的类型。结果表明,在利用形变强化相变实现铁素体的超细化过程中会出现铁素体的相交织构和形变织构,在大应变条件下还会出现动态再结晶织构。在形变强化相变后细晶铁素体在整体上表现为以〈111〉方向为主的线织构。主要的相交织构在粗晶奥氏体内部形变带形核时产生并与〈111〉织构对应。形变织构是在形变时形成的铁素体受到继续变形所致,在形变强化相变过程中及完成后都会产生,对应〈111〉及〈100〉方向的线织构,随着形变的加大,〈100〉方向的织构增加得更快,形变温度的降低有利于形变织构的加强。在形变量很大且形变温度比较合适时(但不能过低)会发生铁素体的动态再结晶,它以连续的方式进行,导致形变织构的进一步加强,并使晶粒均匀细化。  相似文献   

4.
ZrC/奥氏体相界面形变诱导铁素体相变超细化机理   总被引:1,自引:0,他引:1  
利用Gleeble-1500热模拟试验机进行单轴热压缩实验,研究了含ZrC粒子的低碳钢在形变诱导相变过程中ZrC粒子对铁素体晶粒细化的影响及铁素体形核的基本特性.结果表明:一定粒径和体积分数的ZrC粒子弥散分布于基体相中时,能够阻碍位错的运动,形成集中形变区,加速形变诱导相变的进程,因而提高铁素体形核率,导致铁素体晶粒细化;ZrC/奥氏体相界面上形变诱导铁素体相变具有形核位置不饱和性、新生α相超细晶的特点;在应变条件下,铁素体晶粒在〈111〉方向择优取向,晶粒内部存在一定量的小角度晶界,由于铁素体动态再结晶的发生,组织进一步细化.ZrC/奥氏体相界面铁素体晶粒的超细化机理是形变诱导相变、铁素体动态再结晶及ZrC粒子弥散强化三者同时作用的结果.  相似文献   

5.
Q235碳素钢应变强化相变中铁素体的取向特征   总被引:9,自引:2,他引:7  
利用背散射电子衍射取向成像技术分析了在热模拟单向压缩条件下Q235碳素钢应变强化相变中铁素体晶粒的取向(差)变化特点。结果表明,奥氏体的状态影响应变诱导出的铁素体的取向,奥氏体的动态再结晶使应变诱导出的铁素体的取向随机分布,在铁素体的内部基本上没有小角晶界,随着形变温度的降低和应变量的增大,铁素体取向的择优性变强,铁素体内部的小角晶界增加,这是细小铁素体动态再结晶的表现,相变,形变以及铁素体的动态再结晶都影响<111>方向线织构的形成。  相似文献   

6.
何承绪  杨富尧  孟利  刘洋  高洁  马光  韩钰  陈新 《材料导报》2018,32(4):606-610
利用EBSD技术统计了薄规格取向硅钢片中初次再结晶和二次再结晶前期组织中{411}〈148〉、{111}〈112〉、{100}〈025〉取向晶粒尺寸分布,分析了三种不同取向的晶粒对Goss晶粒异常长大的影响。结果表明:初次再结晶组织中不同的取向晶粒对应的平均晶粒尺寸(d)存在差异,{411}〈148〉取向晶粒的平均尺寸最大,其次为{100}〈025〉取向晶粒,{111}〈112〉取向晶粒的平均尺寸最小。Goss取向晶粒异常长大的过程中优先吞噬{111}〈112〉取向晶粒,其次是{411}〈148〉取向晶粒,最后是近{100}〈025〉取向晶粒和近黄铜取向晶粒。{111}〈112〉、{411}〈148〉取向晶粒对Goss取向晶粒异常长大的影响主要体现在二次再结晶的前期。因此,可以推断取向硅钢中最终残留的"岛晶"可能来源于近黄铜取向晶粒或近{100}〈025〉取向晶粒。  相似文献   

7.
利用电子背散射衍射(EBSD)技术和场发射电子扫描显微镜(FESEM)研究了电工钢中柱状晶不同初始取向50%热压缩变形后的演变规律及其对粒子析出行为的影响。结果表明:〈100〉晶粒形变后仍为〈100〉取向,只发生绕ND∥〈100〉方向的转动,具有遗传性,粒子析出数量少。柱状晶长轴与压缩轴的偏转度增加,取向的稳定性变差,超过40°,可形成〈111〉取向,期间发生复杂的滑移系交互作用,产生较高的缺陷密度,促进粒子析出。MnS粒子主要在晶内析出,变形温度高、形变量低,粒子均无法充分析出。回复时,形变晶粒内高的储能和缺陷密度是促进粒子进一步析出的必要条件。  相似文献   

8.
镁合金AZ31高温形变机制的织构分析   总被引:12,自引:0,他引:12  
利用X射线衍射和背散射电子衍射方法测定了镁合金AZ3l高温动态再结晶和超塑形变时的宏观和微观织构,分析了晶粒内部的形变机制.结果表明,在动态再结晶和超塑形变过程中,晶粒内部的滑移机制仍起重要作用,表现为再结晶晶粒出现择优取向以及一些晶粒可充分均匀形变成长条状.宏观织构的测定表明,具有不同初始织构的两类样品高温动态再结晶时,新晶粒有不同的取向择优过程,形成相似的织构;长条形变晶粒内部开动的滑移系也有一定的差异.分析了不同温度下相同的织构对应的不同塑变机理取向成像分析表明,基面织构取向的晶粒间总伴随着较高比例的小角晶界和30°(0001)的取向关系,这是六方结构的六次对称性限制了动态再结晶时(亚)晶粒间取向差的有效增大的缘故.  相似文献   

9.
采用GLEEBLE 3800热模拟机进行回温变形热压缩实验,研究回温温度对微合金钢组织转变和铁素体动态再结晶行为的影响。利用金相显微镜、扫描电镜、透射电镜和背散射电子衍射观察实验钢的微观组织和晶粒取向,并对形变时的应力-应变曲线进行分析。结果表明:实验钢回温变形可获得超细晶组织,晶粒平均等效直径约2μm;在回温过程中变形发生动态回复形成亚晶组织,峰值温度变形发生铁素体动态再结晶形成超细晶粒;动态再结晶机制包括晶界迁移和亚晶的转动生长,回温到700℃和750℃时以前者为主,再结晶不充分,保留了条带状变形铁素体,800℃变形时,两者共同作用,形成均匀的等轴状超细晶组织;通过线性回归计算得到实验钢峰值温度变形时铁素体动态再结晶激活能Qd=250.18kJ/mol。  相似文献   

10.
变形方式对含ZrC粒子20Mn2钢晶粒细化的影响   总被引:1,自引:0,他引:1  
研究了恒温压缩与降温轧制对含ZrC粒子20Mn2钢晶粒细化的影响.结果表明,在奥氏体再结晶温度区间(1150℃、1050℃)和形变诱导铁素体相变温度区间(950℃、900℃、870℃、850℃),20Mn2钢的晶粒尺寸均能细化至3~4μm;在1150~870℃的降温轧制中,20Mn2钢的晶粒尺寸细化至1~3μm.分析表明,由于ZrC粒子的形变核心和再结晶核心的作用,含ZrC粒子的20Mn2钢在高温下(1150℃、1050℃)和较低温度下(950℃、900℃、870℃、850℃),变形的晶粒组织分别因奥氏体再结晶和形变诱导铁素体相变及其再结晶而得到细化;在降温轧制时,由于综合了高温奥氏体再结晶和低温形变诱导铁素体相变及其再结晶的细化晶粒效应,而最终获得的晶粒尺寸比恒温变形的更小.  相似文献   

11.
Cyclic strain hardening has been observed to be markedly sensitive to microstructural changes in microalloyed steels. Two significantly different microstructures - polygonal ferrite grains of average grain size 10–120 μm and acicular ferrite/upper bainite colonies of dimensions 200–625 μm - were examined in order to determine the influence of each on cyclic strain hardening and related properties. Tests were conducted at temperatures between ?150 and 27°C. The cyclic strain hardening exponent, βc, was significantly more sensitive to changes in the size of the polygonal ferrite grains than to changes in the acicular ferrite/upper bainite colony size.  相似文献   

12.
This paper presents a crystal plasticity model to predict the tensile response and crack initiation in a mixed ferrite‐martensite material with a low volume fraction of pro‐eutectoid ferrite, representative of a welding‐induced intercritical heat‐affected zone. It is shown that small volume fractions of ferrite can have a significant effect on material strength and ductility depending on the ferrite grain orientation. For relatively “soft” ferrite grains, microcracks can grow across interferrite ligaments with damage accumulating in the ferrite, leading to a reduction in strength and strain hardening, but with little influence on ductility; in contrast, relatively “hard” ferrite grains act to accelerate microcrack initiation, leading to reduced ductility, with negligible influence on strain hardening up to the maximum load.  相似文献   

13.
Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been employed to examine the austenite to proeutectoid ferrite and ferrite/carbide reactions in two low-carbon (0.04 wt%) steels. It is demonstrated that proeutectoid ferrite (both polygonal and Widmanstätten) can partition the prior austenite grains into several smaller units or pools. It is also shown that prior to the initiation of the pearlite reaction, ferrite grain growth can occur. The pools of austenite exert a Zener-like drag force on the migrating ferrite grain boundaries. However, the ferrite boundaries can eventually break away and small pools of austenite become completely embedded in single proeutectoid ferrite grains. Subsequently, these small pools of austenite transform to discrete regions of cementite, together with epitaxial ferrite. Conversely, certain small pools remain in contact with the ferrite grain boundaries and it is considered that transformation of these latter pools will eventually lead to the formation of massive films of cementite at the ferrite grain boundaries. Larger pools of austenite prevent ferrite boundary breakaway, and these latter, austenitic regions eventually transform to pearlite.  相似文献   

14.
《Materials Science & Technology》2013,29(11-12):1376-1379
Abstract

A new hot strip rolling process is discussed which is capable of producing ultrafine, equiaxed ferrite grains (i.e. less than 2 µm)in the surface region of steel strip. Both microstructural and texture analysis of low carbon steel strip that has been rolled using this method are used to show that the ferrite forms by strain induced transformation. Analysis by electron backscatter diffraction (EBSD) indicates that a strong ferrite microtexture exists within the individual austenite grains in which the ferrite nucleates. The results from bulk X-ray texture analysis confirm that the ferrite forms as a result of transformation from austenite that has undergone heavy shearing during rolling, with nucleation occurring on the austenite substructure. In the centre region of the strip, a bainitic microstructure forms after rolling during air cooling. In the transition region between the surface and the centre of the strip, ferrite is shown to nucleate to form closely spaced parallel ‘rafts’ of ferrite grains traversing individual austenite grains. Again, EBSD is used to show that the ferrite located within these rafts is strongly textured, which, in combination with microstructural evidence, suggests that this ferrite nucleates along intragranular shear bands that form in the austenite in this region of the strip during rolling.  相似文献   

15.
Abstract

In the present study, wedge-shape sa mples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.  相似文献   

16.
In this work the fracture toughness of a longitudinal submerged arc-welding (SAW) seam weld API 5L X52 pipeline of 36 in. diameter and 1 in. thickness, was evaluated and compared in the circumferential–longitudinal (CL) and circumferential-radial (CR) directions. These tests were evaluated by means of compact tension C(T) specimens and nonstandard curved SE(B) specimens, respectively. The K function of the nonstandard curved SE(B) specimens was experimentally calibrated using the compliance experimental technique. The crack initiating notch was aligned in the longitudinal weld direction so the crack propagated through the deposited metal zone for both specimens. The laboratory tests were performed at room temperature. The K \(_{IC}\) average value in the CL direction was \(75.4 \pm 3.22\,\hbox {MPa}\sqrt{\hbox {m}}\) , and for the CR direction was \(56.3 \pm 2.9\,\hbox {MPa}\sqrt{\hbox {m}}\) . The results showed a large difference of K \(_{IC}\) values for each direction analyzed, which was attributed to the anisotropic properties of the weld metal, particularly in the CR direction, where the predominance of acicular ferrite grains (fragile zones) and the porosity provided a favorable crack propagation direction for separation of the fracture plane, resulting in low fracture toughness values in this direction. Finally the fractographic analysis showed that the deposited metal zone consisted of a mixture of acicular ferrite and ferrite grains, presenting a ductile behavior with dimple coalescence in the CL direction and a fragile behavior exhibiting cleavage regions that corresponded to acicular ferrite grains in the CR direction.  相似文献   

17.
Characterization of a δ/γ duplex stainless steel   总被引:2,自引:0,他引:2  
A duplex stainless steel was investigated in both as-received sheet and after annealing at temperatures ranging from 850 to 1100°C. The sheet presents a deformation texture in both phases, austenite and ferrite, induced by cold rolling. Microstructure in the as-received material consists of island-like austenitic grains in a ferrite matrix. These austenitic grains are elongated with an average size of 6, 20 and 40 m along the normal (ND), transversal (TD) and rolling direction (RD). Quantitative texture measurements demonstrated that texture components are distributed mainly along the -fiber (ND ‹100›) and -fiber (RD ‹110›) for the ferrite and the -fiber (ND ‹110›) for the austenite. After recrystallization, a decrease in the intensity of the mean fibers and an increase in the minor components was observed in both, ferrite and austenite. Therefore, a similar texture was reached in both phases after annealing at 1050°C. Microstructural characterization after annealing at temperatures above 850°C showed that the elongated austenitic grains transform in colonies of equiaxic grains of about 10–15 m in size. These colonies are surrounded by a ferritic matrix at annealing temperatures above 1000°C or by a laminar microstructure at temperatures below 950°C. This laminar microstructure includes sigma phase and austenite formed from delta ferrite, and untransformed delta ferrite.  相似文献   

18.
Abstract

The hot ductility of steels having high aluminium or phosphorus contents, which are currently being considered as possible replacements for the conventional high silicon TRansformation Induced Plasticity (TRIP) steel, has been examined. Tensile specimens were cast in situ and tested in the temperature range 750 - 1000 ° C at a strain rate of 3 × 10-3 s-1. The ductility trough for the conventional high silicon TRIP steel was controlled by the austenite - ferrite transformation, intergranular failure occurring when a thin band of the softer ferrite phase formed around the austenite grains. Void formation at the sulphides situated in the soft ferrite at the boundaries then occurred, and the strain concentrated locally there. The thin bands of ferrite were deformation induced and, as such, formed at temperatures above Ar 3 and could form at as high a temperature as Ae 3. Adding ferrite formers such as silicon, phosphorus and aluminium increased the Ae 3 temperature and thus widened the trough. The high aluminium (2%) TRIP steel exhibited good ductility throughout the temperature range examined, since large amounts of ferrite were always present, preventing strain concentration, and the AlN particles were too coarse to influence the hot ductility. In contrast, the 1%Al containing steel gave poor ductility below 850 ° C, the band of strain induced ferrite being extremely thin. The ductility trough in the titanium containing high phosphorus steel was poor, owing to fine precipitation of TiN. Adding boron to the steel and reducing the manganese content from 1.4 to 1% resulted in better ductility. Generally, the TRIP type steels had superior ductility to the conventional niobium containing high strength low alloy steel.  相似文献   

19.
B. Eghbali 《Materials Letters》2007,61(18):4006-4010
Torsion testing was carried out on a plain carbon steel to study ferrite grain refinement during warm deformation within two-phase (α + γ) region. Fine ferrite grains development was analyzed by using optical microscope and EBSD technique. Microstructural analysis shows that with increasing strain the new fine equiaxed ferrite grains surrounded by high angle boundaries start generating at the initial boundaries and the volume fraction of fine grains is increased and that of work hardened grains decreased. It was seen that there is no evidence of discontinuous dynamic recrystallization. Thus, it is suggested that the occurrence of continuous dynamic recrystallization is responsible for the formation of new fine ferrite grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号