首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Highly uniform and large‐area single‐walled carbon‐nanotube (SWNT) networks are realized by the dip‐coating method, which is based on fundamental fluid‐dynamic phenomena such as capillary condensation and surface tension. The changes in the polarity and hydration properties of the substrate affect the morphology of the SWNT networks and result in nonlinear growth of the networks in the repetitive dip‐coating process. The density and the thickness of the SWNT networks are controlled by processing variables including number of dip coatings, concentration of SWNT colloidal solution, and withdrawal velocity. The networks have uniform sheet resistances and high optical transmittance in the visible wavelength range.  相似文献   

10.
11.
An in situ electron microscopy study is presented of adhesion interactions between single‐walled carbon nanotubes (SWNTs) by mechanically peeling thin free‐standing SWNT bundles using in situ nanomanipulation techniques inside a high‐resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled‐displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large‐displacement regime.  相似文献   

12.
Because of the outstanding mechanical and electrical properties of carbon nanotubes (CNTs), a CNT‐based torsion pendulum is demonstrated to show great potential in nano‐electromechanical systems. It is also expected to achieve various manipulations for further characterization and increase device sensitivity using ultrlong CNTs and macroscale moving parts. However, the reported top‐down method limits the CNT performance and device size by introducing inevitable contamination and destruction, which greatly hinders the development of single‐molecule devices. Here, a bottom‐up method is introduced to fabricate heterostructures of anthracene flakes (AFs) and suspended CNTs, providing a nondamaging CNT mechanical measurement before further applications, especially for the twisting behavior, and providing a controllable and clean transfer method to fabricate CNT‐based electrical devices under ambient conditions. Based on the unique geometry of CNT/AF heterostructures, various complex manipulations of single‐CNT devices are conducted to investigate CNT mechanical properties and prompt novel applications of similar structures in nanotechnology. The AF‐decorated CNTs show high Young's modulus (≈1 TPa) and tensile strength (≈100 GPa), and can be considered as the finest and strongest torsional springs. CNT‐based torsion balance enables to measure fN‐level forces and the torsional spring constant is two orders of magnitude lower than previously reported values.  相似文献   

13.
14.
15.
Since their discovery in 1991, carbon nanotubes (CNTs) have been considered as the next‐generation reinforcement materials to potentially replace conventional carbon fibers for producing super‐high‐performance lightweight composites. Herein, it is reported that sheets of millimeter‐long multi‐walled CNTs with stretch alignment and epoxidation functionalization reinforce bismaleimide resin, which results in composites with an unprecedentedly high tensile strength of 3081 MPa and modulus of 350 GPa, well exceeding those of state‐of‐the‐art unidirectional carbon‐fiber‐reinforced composites. The results also provide important experimental evidence of the impact of functionalization and the effect of alignment reported previously on the mechanical performance and electrical conductivity of the nanocomposites.  相似文献   

16.
Applications of carbon nanotubes (CNTs) in flexible and complementary metal‐oxide‐semiconductor (CMOS)‐based electronic and energy devices are impeded due to typically low CNT areal densities, growth temperatures that are incompatible with device substrates, and challenges in large‐area alignment and interconnection. A scalable method for continuous fabrication and transfer printing of dense horizontally aligned CNT (HA‐CNT) ribbon interconnects is presented. The process combines vertically aligned CNT (VA‐CNT) growth by thermal chemical vapor deposition, a novel mechanical rolling process to transform the VA‐CNTs to HA‐CNTs, and adhesion‐controlled transfer printing without needing a carrier film. The rolling force determines the HA‐CNT packing fraction and the HA‐CNTs are processed by conventional lithography. An electrical resistivity of 2 mΩ · cm is measured for ribbons having 800‐nm thickness, while the resistivity of copper is 100 times lower, a value that exceeds most CNT assemblies made to date, and significant improvements can be made in CNT structural quality. This rolling and printing process could be scaled to full wafer areas and more complex architectures such as continuous CNT sheets and multidirectional patterns could be achieved by straightforward design of the CNT growth process and/or multiple rolling and printing sequences.  相似文献   

17.
Vertically aligned carbon‐nanotube arrays are synthesized by chemical vapor deposition. Carbon‐nanotube fibers are directly spun from the obtained nanotube arrays and then tested mechanically. A strong correlation between the array morphologies and the mechanical properties of the fibers is observed: well‐aligned arrays yield fibers with much higher performance, while wavy and entangled arrays give poor fiber properties. More importantly, such array morphologies could be controlled by introducing hydrogen or oxygen during the nanotube synthesis. By simply switching the growth condition from 150 ppm oxygen addition to 2% hydrogen addition, the nanotube array changes from the wavy morphology to the well‐aligned morphology, and correspondingly the tensile strength of the resultant fibers could be increased by 4.5 times, from 0.29 GPa for the fibers spun from the oxygen‐assistance‐grown nanotube arrays to 1.3 GPa for the fibers spun from the hydrogen‐assistance‐grown nanotube arrays. The detailed effects of hydrogen and oxygen on the nanotube growth, especially on the growth rate and the array spinnability, are extensively studied. The formation mechanism of the different morphologies of the nanotube arrays and the failure mechanism of the nanotube fibers are also discussed in detail.  相似文献   

18.
Semiconducting single‐walled carbon nanotubes (swCNTs) are a promising class of materials for emerging applications. In particular, they are demonstrated to possess excellent biosensing capabilities, and are poised to address existing challenges in sensor reliability, sensitivity, and selectivity. This work focuses on swCNT field‐effect transistors (FETs) employing rubbery double‐layer capacitive dielectric poly(vinylidene fluoride‐co‐hexafluoropropylene). These devices exhibit small device‐to‐device variation as well as high current output at low voltages (<0.5 V), making them compatible with most physiological liquids. Using this platform, the swCNT devices are directly exposed to aqueous solutions containing different solutes to characterize their effects on FET current–voltage (FET IV) characteristics. Clear deviation from ideal characteristics is observed when swCNTs are directly contacted by water. Such changes are attributed to strong interactions between water molecules and sp2‐hybridized carbon structures. Selective response to Hg2+ is discussed along with reversible pH effect using two distinct device geometries. Additionally, the influence of aqueous ammonium/ammonia in direct contact with the swCNTs is investigated. Understanding the FET IV characteristics of low‐voltage swCNT FETs may provide insights for future development of stable, reliable, and selective biosensor systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号