首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目前,对能源的需求急剧增加,超级电容器作为绿色储能器件备受关注。超级电容器按储能机理可分为双电层电容器及法拉第赝电容器两种。双电层电容器的电极材料主要由炭基材料组成,法拉第赝电容器的电极材料主要由导电聚合物及金属氧化物构成;炭基材料与导电聚合物或金属氧化物等复合产生的协同作用可获得更优异的电化学性能。多孔电极材料由于其大的比表面积、独特的多孔结构、多样化的组成和优异的电子导电性而引起了广泛的关注。总结了具有微观多孔结构的超级电容器材料的制备方法以及结构-性能的关系,对比指出多孔超级电容器电极材料因其更高的比表面积和孔隙率而更有利于获得高性能超级电容器。  相似文献   

2.
与传统能量存储设备相比,超级电容器因具备比电容高、充放电快、绿色环保并且循环稳定性能优异等优点,在移动通信、电动汽车、国防和航空航天领域具有广阔的应用前景,已成为世界范围内的研究焦点。其中,超级电容器的电极材料是其性能的决定因素,常见的超级电容器电极材料包括碳材料、过渡金属氧化物和导电聚合物等。不同的电极材料的电荷储存机理不同,过渡金属氧化物具有典型的赝电容行为,依赖可逆的氧化还原反应和化学吸附/脱附过程来储存电荷,理论比电容高。然而,过渡金属氧化物同时存在导电性能差,循环稳定性不佳的缺点。碳材料主要表现双电层电容特性,依靠材料表面和电解质离子间的可逆物理吸附/脱附过程储存电荷,具有优异的倍率性能,符合实际生产和应用中对于超级电容器器件高寿命的要求,但其自身比电容相对较低。与单一属性的材料相比,复合材料往往表现出更加优异的电化学性能,大量的研究表明,过渡金属氧化物与碳材料的复合是解决上述问题的有效途径。碳材料因具有来源丰富、价格低廉、质量轻盈、比表面积高以及热稳定性好与电化学性能稳定等优点,日益受到重视,是构建赝电容电容器电极的首选基底材料。碳材料结构多样,近年来,零维的碳量子点、碳球,一维的碳纳米管、碳纳米纤维,二维的石墨烯、氧化石墨烯,三维的石墨烯泡沫、碳泡沫/海绵等均被成功地用于构建碳基复合电极材料,并取得了丰硕的成果。零维碳纳米材料具有高比表面积,提供了调节多孔性的灵活度,可以获得适合各自电解质溶液的最优化条件。一维碳纳米结构一般具有高长宽比和良好的电子传输性能,可以促进超级电容器电极的电荷转移。二维碳纳米结构具有比表面积大与导电性高、力学性能优良等特点,具备潜在赝电容行为,并且能增强超级电容器电极间的充放电反应动力学。利用三维导电材料作为模板,沉淀赝电容材料,可以构建高性能超级电容器电极。本文概述了不同维度碳材料负载过渡金属氧化物作为赝电容的电极材料及其电容性能,并对电极材料储能方面存在的不足和未来的研究方向做出了总结和展望,以期为制备性能优良、环境友好和高寿命的超级电容器提供参考。  相似文献   

3.
竹炭(BC)作为超级电容器电极材料具有原料易得,可再生且具有生长周期短、环境友好等特点,其制备的超级电容器具有成本低、容量高、充放电时间短、环境友好和安全性高等优点,受到人们的广泛关注。本文综述了近年来基于竹炭及其与金属氧化物材料和导电聚合物材料(聚苯胺)复合所得电极材料在超级电容器中的应用进展,指出具有高比表面积和可控孔径结构的竹炭与无机纳米材料和导电聚合物的复合是竹炭基超级电容器研究的重要发展方向。  相似文献   

4.
张苗苗  刘旭燕  钱炜 《材料导报》2018,32(3):378-383
聚吡咯是导电稳定性最好的导电聚合物之一。因其制备方式简单、环境友好、导电率高、电容性好及独特的掺杂性,制备聚吡咯复合材料以提高电极材料的稳定性成为超级电容器导电聚合物基电极材料的热点研究方向。综述了近年来聚吡咯电极材料及其与碳基材料、金属氧化物材料等二元、三元复合电极材料应用于超级电容器中的研究进展,介绍了聚吡咯的电荷储存机制、聚合机理、制备方法等,指出了当前超级电容器聚吡咯及其复合电极材料的热点研究领域,并且展望了其发展前景。  相似文献   

5.
电化学超级电容器电极材料的研究进展   总被引:11,自引:0,他引:11  
电化学超级电容器以其独特的大容量、大电流快速充放电和高的循环使用寿命等特点,受到世人的青睐,致使许多新型的电化学超级电容器电极材料相继被发现和应用。为进一步促进电化学超级电容器的发展,在综述了近年来出现的各种电化学超级电容器电极材料的基础上,提出按材料种类将其分为四大系列:碳材料系列、过渡金属氧化物系列、有机导电聚合物系列和其他系列。并就其各自的特点和性能进行了分析比较,得出了碳材料系列主要向高比表面积和可控微孔孔径方向发展和过渡金属氧化物系列主要向提高材料本身的利用率方向发展以及导电聚合物系列主要向无机、有机杂化方向发展的结论。  相似文献   

6.
《纳米科技》2013,(2):84-84
神奇的“超级电容器” 超级电容器,也称电化学电容器,是基于高比表面积炭电极/电解液界面产生的双电层电容,或者基于过渡金属氧化物或导电聚合物的表面及体相所发生的氧化还原反应来实现能量的储存。其构造与电池类似,主要包括正负电极、电解液、隔膜和集流体。作为一种新型储能装置,超级电容器具有输出功率高、充电时间短、使用寿命长、工作温度范围宽、安全且无污染等优点,有望成为本世纪新型的绿色电源。  相似文献   

7.
非对称型超级电容器作为超级电容器的新生代,具有比能量高、比功率大和循环性能良好等优点。综述了非对称型超级电容器的工作原理及发展现状,认为廉价易得、性能优良的金属氧化物、导电聚合物等与高比表面积碳材料的复合与匹配,不同孔隙结构的碳材料、水合金属氧化物等作为电容器正负极,可能是非对称超级电容器的研发方向。  相似文献   

8.
超级电容器导电聚合物电极材料的研究进展   总被引:2,自引:0,他引:2  
导电聚合物是一类重要的超级电容器电极材料,其电容主要来自于法拉第准电容.采用不同掺杂方式的导电性聚合物(n型或p型)作为电极材料使相应的超级电容器分为3种基本类型,这3种类型的超级电容器各具有不同的导电结构及特性.介绍了超级电容器导电聚合物的工作原理和导电聚合物电极材料的研究进展.  相似文献   

9.
非对称型超级电容器结合了双电层电容器和法拉第准电容器的优点,具备高能量密度和功率密度、循环寿命长等特性,成为近年来超级电容器领域的研究热点。非对称型超级电容器电极材料包括碳材料/过渡金属氧化物体系、碳材料/导电聚合物体系和金属氧化物/导电聚合物体系,综述了非对称型超级电容器电极材料的类型及研究进展。  相似文献   

10.
超级电容器电极材料的研究现状与展望   总被引:2,自引:2,他引:0  
超级电容器是一种介于传统电容器与电池之间的新型储能元件,具有广阔的应用前景和巨大的经济价值.电极材料是决定超级电容器性能的关键因素,因而备受关注.主要论述了目前应用于超级电容器的多孔炭材料、金属氧化物及导电聚合物等电极材料的研究进展,探讨了电极材料今后的发展方向和研究重点,并指出大力开发复合电极材料是改善超级电容器性能的有效途径.  相似文献   

11.
One-dimensional alkali metal titanates containing potassium,sodium,and lithium are of great concern owing to their high ion mobility and high specific surface area.When those titanates are combined with conductive materials such as graphene,carbon nanotube,and carbon nanofiber,they are able to be employed as efficient electrode materials for supercapacitors.Potassium hexa-titanate(K2Ti6O13,KTO),in particular,has shown superior electrochemical properties compared to other alkali metal titanates because of their large lattice parameters induced by the large radius of potassium ions.Here,we present porous rGO crumples(PGC)decorated with KTO nanoparticles(NPs)for application to supercapacitors.The KTO NP/PGC composites were synthesized by aerosol spray pyrolysis and post-heat treatment.KTO NPs less than 10 nm in diameter were loaded onto PGCs ranging from 3 to 5μm.Enhanced porous structure of the composites was obtained by the activation of rGO by adding an excessive amount of KOH to the composites.The KTO NP/PGC composite electrodes fabricated at the GO/KOH/TiO2 ratio of 1:3:0.25 showed the highest performance(275 F g−1)in capacitance with different KOH concentrations and cycling stability(83%)after 2000 cycles at a current density of 1 A g−1.  相似文献   

12.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

13.
Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance   总被引:1,自引:0,他引:1  
A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.  相似文献   

14.
Kim JH  Lee KH  Overzet LJ  Lee GS 《Nano letters》2011,11(7):2611-2617
Inspired by the high specific capacitances found using ultrathin films or nanoparticles of manganese oxides (MnO(x)), we have electrodeposited MnO(x) nanoparticles onto sheets of carbon nanotubes (CNT sheets). The resulting composites have high specific capacitances (C(sp) ≤ 1250 F/g), high charge/discharge rate capabilities, and excellent cyclic stability. Both the C(sp) and rate capabilities are controlled by the average size of the MnO(x) nanoparticles on the CNTs. They are independent of the number of layers of CNT sheets used to form an electrode. The high-performance composites result from a synergistic combination of large surface area and good electron-transport capabilities of the MnO(x) nanoparticles with the good conductivity of the CNT sheets. Such composites can be used as electrodes for lithium batteries and supercapacitors.  相似文献   

15.
Monometallic Ni2+‐Ni3+ layered double hydroxide (LDH) is prepared using a simple oxidative intercalation process and may be further exfoliated into positively charged Ni(OH)2 unilamellar sheets. The superior capacitive behavior of the unilamellar sheets stranded in carbon nanotubes (CNTs) networks is achieved because of the complete interfacial charge storage arising from the confined Faradaic reactions at the interfacial region. 3D nanosheet/CNT composites are prepared using an in situ electrostatic assembly of positive charged sheets with CNTs bearing negative charges. The restacking of active nanosheets during electrochemical cycling is effectively prohibited. Consequently, the outstanding specific capacitance and remarkable rate capability of the nanosheet/CNT hybrid electrodes are demonstrated, making them promising candidates for high performance supercapacitors, combining high‐energy storage densities with high levels of power delivery.  相似文献   

16.
以石墨烯为代表的具有层状结构的二维材料因具有大比表面积等特性成为超级电容器电极材料的热门候选。文章着眼于针对诸如石墨烯、过渡金属二硫族化合物、过渡金属碳/氮化物、层状过渡金属氧化物/氢氧化物等二维材料在超级电容器领域应用的研究,尝试总结了其制备方法、产物形貌特征以及作为电极的性能等,并对这一领域的未来发展和面临的挑战提出了看法与预测。  相似文献   

17.
以石墨烯为代表的具有层状结构的二维材料因具有大比表面积等特性成为超级电容器电极材料的热门候选.文章着眼于针对诸如石墨烯、过渡金属二硫族化合物、过渡金属碳/氮化物、层状过渡金属氧化物/氢氧化物等二维材料在超级电容器领域应用的研究,尝试总结了其制备方法、产物形貌特征以及作为电极的性能等,并对这一领域的未来发展和面临的挑战提出了看法与预测.  相似文献   

18.
Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric‐like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high‐energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3O4 are deposited on as‐spun CNT yarn surface using a simple electrodeposition process. The Co3O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3O4 layer. The two‐ply supercapacitors formed from the CNT@Co3O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm?2 and energy density of 1.10 μWh cm?2. The high performance two‐ply CNT@Co3O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics.  相似文献   

19.
《Advanced Powder Technology》2019,30(12):3079-3087
In recent years, supercapacitors have received considerable research attention for energy storage systems due to their high-power density, fast charge-discharge processes, and long cycle life. The superior performance of supercapacitors is considerably dependent on the electrode materials. Among electrode materials, graphene balls (GBs) and their composites have recently attracted strong interest. They are considered ideal for the fabrication of electrode materials because of their unique characteristics of large specific surface area and superior electric conductivity, which should make them very effective for use in supercapacitors. In particular, GBs and their microstructured composites have recently been proven promising candidates for supercapacitor electrodes. Their unique 3D morphology provides highly porous graphene structures for decoration with active materials. In this perspective, recent studies were highlighted and discussed that focus on GBs and their composites for the potential energy storage devices called supercapacitors, (i.e., electric double layer capacitors and pseudocapacitors).  相似文献   

20.
Novel inexpensive, light, flexible, and even rollup or wearable devices are required for multi-functional portable electronics and developing new versatile and flexible electrode materials as alternatives to the materials used in contemporary batteries and supercapacitors is a key challenge. Here, binder-free activated carbon (AC)/carbon nanotube (CNT) paper electrodes for use in advanced supercapacitors have been fabricated based on low-cost, industrial-grade aligned CNTs. By a two-step shearing strategy, aligned CNTs were dispersed into individual long CNTs, and then 90 wt%–99 wt% of AC powder was incorporated into the CNT pulp and the AC/CNT paper electrode was fabricated by deposition on a filter. The specific capacity, rate performance, and power density of the AC/CNT paper electrode were better than the corresponding values for an AC/acetylene black electrode. The capacity reached a maximum value of 267.6 F/g with a CNT loading of 5 wt%, and the energy density and power density were 22.5 W·h/kg and 7.3 kW/kg at a high current density of 20 A/g. The AC/CNT paper electrode also showed a good cycle performance, with 97.5% of the original capacity retained after 5000 cycles at a scan rate of 200 mV/s. This method affords not only a promising paper-like nanocomposite for use in low-cost and flexible supercapacitors, but also a general way of fabricating multi-functional paper-like CNT-based nanocomposites for use in devices such as flexible lithium ion batteries and solar cells.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号