首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Utilizing shock compression physics considerations and explicit numerical techniques a methodology has been developed to design composite personnel armor by optimizing the role each layer plays during projectile defeat. The initial design consists of a very hard 1st layer to deform and fracture the projectile, an orthotropic 2nd layer to slow down the shock wave propagation in the through thickness direction, whilst allowing rapid propagation in the transverse directions, a 3rd porous layer to absorb the shock wave energy through PV-work, and a 4th layer to provide confinement for the porous medium. Based on the above armor protection concept, composite plates comprising of alumina (Al2O3) Ceramic, Dyneema® HB25 and porous polyurethane (PU) foam were constructed to test against baseline armor AISI 4140 steel plate. A hypothetical orthotropic material model closely resembling that of Dyneema HB25 was derived based on fundamental materials relations as well as limited available literature information. Material models for the other materials used in this research were based on existing sources. An integral experiment was conducted to validate this composite armor against numerical simulations. Through this study, the composite armor has been shown experimentally to be more effective in resisting penetration than a steel plate of equivalent (and slightly greater) areal density, and that the material layering sequence is fundamentally correct, while the numerical modeling has provided a general guidance to the behavior of the system. This research was done to explore this kind of approach to armor design to evaluate its merit. We make no claim that this design is ready for field use.  相似文献   

2.
The material model for a multi-walled carbon nanotube (MWCNT) reinforced poly-vinyl-ester-epoxy matrix composite material (carbon nanotube reinforced composite mats, in the following) developed in our recent work (M. Grujicic et al. submitted), has been used in the present work within a transient non-linear dynamics analysis to carry out design optimization of a hybrid polymer-matrix composite armor for the ballistic performance with respect to the impact by a fragment simulating projectile (FSP). The armor is constructed from E-glass continuous-fiber poly-vinyl-ester-epoxy matrix composite laminas interlaced with the carbon nanotube reinforced composite mats. Different designs of the hybrid armor are obtained by varying the location and the thickness of the carbon nanotube reinforced composite mats. The results obtained indicate that at a fixed thickness of the armor, both the position and the thickness of the carbon nanotube reinforced composite mats affect the ballistic performance of the armor. Specifically, it is found that the best performance of the armor is obtained when thicker carbon nanotube reinforced composite mats are placed near the front armor face, the face which is struck by the projectile. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the lamina/met and laminate/air interfaces.  相似文献   

3.
In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations.  相似文献   

4.
为研究层间混杂复合材料装甲板的防弹性能及其防弹机制,采用钢芯弹侵彻层间混杂复合材料装甲板。以超高分子量聚乙烯(Ultra high molecular weight polyethylene,UHMWPE)纤维、对位芳香族聚酰胺纤维作增强纤维,水性聚氨酯(Waterborne Polyurethane,WPU)树脂和环氧树脂(Epoxy resin,EP)作基体,采用热压工艺制备单向(Unidirectional,UD)结构的层间混杂复合材料装甲板。研究混杂比例、防弹面和树脂基体对混杂复合材料装甲板防弹性能的影响以及弹击后混杂复合材料装甲板的破坏形貌,分析混杂复合材料装甲板的防弹机制,并对复合材料装甲板的破坏机制进行了分析。结果表明:混杂复合材料装甲板的防弹性能优于其任一单一纤维复合材料装甲板;WPU的防弹性能要优于环氧树脂;以UHMWPE纤维复合材料充当防弹面时,混杂复合材料装甲板具有更好的防弹性能;纤维拉伸变形和装甲板分层是纤维复合材料装甲板主要的吸能方式。  相似文献   

5.
根据防护要求和防护机制,设计了一种C/C-SiC陶瓷/铝基复合泡沫复合装甲。在确保复合装甲面密度为44 kg/m2的前提下,以弹击后剩余弯曲强度为评价标准,以陶瓷板布置位置、各组成层厚度、泡沫金属中泡沫孔径尺寸为研究因素,设计了三因素三水平的正交模拟优化方案,利用有限元软件ABAQUS模拟了子弹侵彻陶瓷靶板的过程及弹击损伤后复合装甲的弯曲实验过程,预测了剩余弯曲强度,并进行了结构优化。根据数值模拟结果制备陶瓷复合装甲试样,进行实弹打靶和弯曲实验以验证复合装甲试样剩余弯曲强度。结果表明,以MIL-A-46103E Ⅲ类2A级为防护标准,剩余弯曲强度最高的陶瓷复合装甲最优化结构形式为:陶瓷板厚度12 mm、陶瓷板做防弹面板、Al基复合泡沫孔径为4 mm+10 mm的混合;对剩余弯曲强度的主次影响因素排序为:陶瓷板厚度>陶瓷板布置位置>Al基复合泡沫孔径。  相似文献   

6.
为研究多层异质复合结构动力学响应及抗侵彻性能,利用霍普金森试验装置,对不同材料排布顺序及含泡沫铝夹芯的多层复合结构进行冲击加载,通过贴在入射杆和透射杆上的应变片测得入射波、反射波、透射波波形,验证数值仿真模型正确性;结合数值模拟,研究不同结构对试件内部应力波传播特性和应力场分布影响规律;依据复合结构动力学响应特征,设计复合靶板并进行抗侵彻试验,分析靶板塑性变形特征及抗侵彻耗能机制;通过数值模拟分析泡沫铝夹芯厚度对防护性能影响。结果表明,装甲钢后置复合结构及含泡沫夹芯结构有助于减缓应力集中,减小陶瓷损伤面积;泡沫铝夹芯过厚难以为靶板变形提供支撑,降低抗侵彻阻力;五种夹芯厚度h=2 mm、h=5 mm、h=10 mm、h=20 mm、h=30 mm中,h=10 mm对应多层异质复合靶防护性能最优。  相似文献   

7.
Utilization of a ceramic front layer provides an improvement in the ballistic efficiency of monolithic metallic materials. In the current paper, the ballistic behavior of laminated composite having alumina front and dual phase steel backing layers was studied using 7.62 mm armor piercing (AP) projectiles under normal impact. The variables used were martensite content of the backing layer and the areal density of the composite. Experimental results showed that utilization of a 6 mm thick alumina front layer which was bonded to dual phase steel enhanced the ballistic resistance of the dual phase steel remarkably.  相似文献   

8.
为探讨结构形式对舰船舷侧复合装甲结构抗穿甲性能的影响,采用均质钢板前置和后置复合材料板分别模拟舰船舷侧外设和内设复合装甲结构,结合低速弹道冲击实验,分析和比较了两种结构形式组合靶板的穿甲破坏模式和抗弹吸能能力。在此基础上,得到了球头弹穿透后置组合靶板的剩余速度理论预测公式,并与试验结果进行了比较。结果表明,两种组合靶板中复合装甲板破坏模式的差异主要体现在迎弹面纤维剪切断裂的程度,而均质钢板则由于复合装甲板的影响,呈现出完全不同的破坏模式;后置组合靶板的抗弹吸能能力要大于前置组合靶板;将弹丸穿透后置组合靶板的剩余速度理论预测值与实验结果进行比较,两者吻合较好。  相似文献   

9.
Armor systems made of ceramic and composite materials are widely used in ballistic applications to defeat armor piercing (AP) projectiles. Both the designers and users of body armor face interesting choices – how best to balance the competing requirements posed by weight, thickness and cost of the armor package for a particular threat level. A finite element model with a well developed material model is indispensible in understanding the various nuances of projectile–armor interaction and finding effective ways of developing lightweight solutions. In this research we use the explicit finite element analysis and explain how the models are built and the results verified. The Johnson–Holmquist material model in LS-DYNA is used to model the impact phenomenon in ceramic material. A user defined material model is developed to characterize the ductile backing made of ultra high molecular weight polyethylene (UHMWPE) material. An ad hoc design optimization is carried out to design a thin, light and cost-effective armor package. Laboratory testing of the prototype package shows that the finite element predictions of damage are excellent though the back face deformations are under predicted.  相似文献   

10.
Due to the significance of the propagation of stress wave in composite armor during projectile–target interaction, the characteristics of stress wave propagation in multi-layered composite structure under impact load were investigated by traditional Split Hopkinson Pressure Bar system in this study. The effect of interlayer characteristic on the stress wave propagation was discussed. The results show that the interlayer properties between CMC and RHA steel play an important role in the propagation of wave. Compared to “CMC/RHA” structure without interlayer, the tungsten carbide interlayer can increase stress level in CMC layer remarkably, while silica gel layer has an opposite effect, and epoxy resin adhesive layer has no distinct effect on the propagation of stress wave. The increased compressive stress level in CMC layer is very useful when the CMC layer served as the face plate of a composite armor. During the impact process of the projectile to the armor, the anti-penetration capability of the face plate of the composite armor can be improved when in the compression stress state. In the comparison ballistic testing conducted with 7.62 mm armor piercing projectiles, the protection efficiency of the “CMC/WC/RHA” composite armor is about 36% higher than that of the “CMC/RHA” structure, which is in good correlation with the stress wave measurement results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号