首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The properties of the interlayer and outer layer of Ti/Co/SnO2-Sb2O5 electrode were studied, and the electrochemical behavior was examined as well. As a result of unsatisfactory treatment using Ti/Co/SnO2-Sb2O5 electrode, electrochemical disposal of paper mill wastewater employing three-dimensional electrodes, combining active carbon granules serving as packed bed particle electrodes, with Ti/Co/SnO2-Sb2O5 anode, was performed. The outcome demonstrates that efficient degradation was achieved. The residual dimensionless chemical oxygen demand (COD) concentration reached 0.137, and color removal 75% applying 167 mA cm(-2) current density at pH 11 and 15 g l(-1) NaCl. The instant current efficiency, energy cost, electrochemical oxidation index (EOI) and kinetic constant of the reaction were calculated. At the same time, the influence of pH and current density on COD abatement and decolorization was also investigated, respectively.  相似文献   

2.
In this work, a novel electrode of titanium substrate coated with mixed metal oxides of SnO(2), Sb(2)O(3), Nb(2)O(5) and PbO(2) was successfully prepared using thermal decomposition and electrodeposition. The surface morphology and the structure of the prepared thin film were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. Experimental results showed that the structure of the prepared electrode might be described as a Ti/SnO(2)-Sb(2)O(3)-Nb(2)O(5)/PbO(2) thin film and its surface was mainly comprised pyramidal-shape beta-PbO(2) crystals. The modified electrode had higher oxygen evolution potential than that of other PbO(2) modified electrodes. Electrocatalytic oxidation of phenol in aqueous solution was studied to evaluate the potential applications of this electrode in environmental science. The phenol removal efficiency in an artificial wastewater containing 0.50g/L phenol could reach 78.6% at 20 degrees C and pH 7.0 with an applied electricity density of 20mA/cm(2) and treatment time of 120min. When 21.3g/L chloride was added to this wastewater, the removal efficiency could reach to 97.2%.  相似文献   

3.
A new catalytic oxidation of anionic surfactants by electrochemistry method was designed and used to investigate the removal of anionic surfactant from simulated wastewater. Synergetic effect on COD removal was studied when integrating the electrochemical reactor, using porous graphite as anode and cathode, with the effective CuO-Co2O3-PO4(3-) modified kaolin catalyst in a single undivided cell. The result showed that this combined process could effectively remove anionic surfactant. Its COD removal efficiency was much higher than those individual processes and could reach up to 90% in 60 min. The operating parameters such as initial pH, cell voltage, and current intensity were also investigated. Possible theory for COD removal was also proposed to predict the role of modified kaolin, electro-catalysis and oxidation in the combined process. The pollutants in wastewater could be decreased by the high reactive OH* that produced on the surface of catalyst by the decomposition of electrochemical generated H2O2. The result indicates that the catalytic oxidation by electrochemistry method is a promising wastewater treatment technique.  相似文献   

4.
The electrochemical oxidation of pulp and paper making wastewater assisted by transition metal (Co, Cu) modified kaolin in a 200 ml electrolytic batch reactor with graphite plate as electrodes was investigated. H(2)O(2), which produced on the surface of porous graphite cathode, would react with the catalysts to form strong oxidant (hydroxyl radicals) that can in turn destroy the pollutants adsorbed on the surface of kaolin. The transition metal (Co, Cu) modified kaolin was also characterized by XRD and SEM before and after the modification and the results showed that the transition metals were completely supported on kaolin and formed a porous structure with big BET surface. The mechanism was proposed on the basis of XPS analysis of the catalyst after the degradation process. Series of experiments were also done to prove the synergetic effect of the combined oxidation system and to find out the optimal operating parameters such as initial pH, current density and amount of catalyst. From the results it can be founded that when the initial pH was at 3, current density was 30 mA cm(-2); catalyst dose was 30 g dm(-3), COD (chemical oxygen demand) removal could reach up to 96.8% in 73 min.  相似文献   

5.
The combined process of electro-catalytic oxidation and de-colorization of wastewater contained Methyl Orange (MO) in a double-anode system, with iron plate and graphite plate as anodes and graphite plate as cathode assisted by Co2O3-CuO-PO4(3-) modified kaolin, was investigated systematically. The effects of pH, current density and electrolyte on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this combined degradation method on treatment of MO wastewater and the results revealed that when initial pH was 5.0, current density was 30 mA cm(-2), NaCl as electrolyte and its concentration was 2.5 g dm(-3), the color removal efficiency and COD removal can reach 100% and 89.7%, respectively. Meanwhile, the kinetics and the possible mechanism were also discussed.  相似文献   

6.
Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe(3+) had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40min of electrochemical treatment of the wastewater at current density 30mAcm(-2). A possible mechanism for degradation of the mill wastewater constituents was also proposed.  相似文献   

7.
采用热分解法制备了稀土Dy、Nd、Eu及Gd掺杂Ti/SnO2-Sb电极,以苯酚为目标有机物,研究了所制备电极降解有机物的性能.在500 mg/L苯酚溶液中进行了所制备电催化电极的循环伏安(CV)特性分析,研究发现4种稀土(Dy、Nd、Eu和Gd)掺杂电极中苯酚在Nd掺杂Ti/SnO2-Sb(Ti/SnO2-Sb-Nd)电极上的直接氧化的峰电流最高,为4.46 mA/cm2.在0.5 mol/L的H2SO4溶液中进行了Tafel曲线测试,4种稀土掺杂Ti/SnO2-Sb电极的析氧电位分别为2.293、2.313、2.277、2.263 V(vs.Ag/AgCl).结果表明,所制备的4种稀土掺杂电极降解苯酚的性能与采用CV和Tafel曲线方法分析的结果一致,可以采用电化学方法评价电极的电催化氧化性能.  相似文献   

8.
Electro-catalytic degradation of phenol on several metal-oxide anodes   总被引:1,自引:0,他引:1  
Three kinds of Ti-based multilayer metal-oxide electrode, including Ti/SnO(2)+Sb(2)O(3)/PbO(2), Ti/SnO(2)+Sb(2)O(3)/MnO(x) and Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2) electrodes, were prepared by thermal decomposition, and SnO(2)+Sb(2)O(3) coatings were produced with a polymeric precursor method (PPM). The conversion of phenol was carried out with these electrodes as anodes under galvanostatic control. Samples during the electrolyses were characterized with UV-vis spectra and chromatography, and chemical oxygen demand (COD) and instantaneous current efficiency (ICE) for phenol degradation were also determined. The results show that phenol can be oxidized and degraded for all of the three anodes, and the oxidation reactions of phenol follow first-order kinetics, but there are considerable differences in the effectiveness and performance of electro-catalytic degradation. Phenol can be degraded relatively fast on the Ti/SnO(2)+Sb(2)O(3)/PbO(2) anode and the degradation rate of phenol is slower with the Ti/SnO(2)+Sb(2)O(3)/MnO(x) electrode, and the slowest with the Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2) electrode, whose apparent rate constants are 2.49 x 10(-2), 1.42 x 10(-2) and 9.76 x 10(-3) min(-1), respectively. The rates of electro-catalytic degradation relate to oxygen evolution potential, and the higher the oxygen evolution potential, the better the performance of electro-catalytic degradation. The potential for oxygen evolution at the Ti/SnO(2)+Sb(2)O(3)/PbO(2) anode is highest, then Ti/SnO(2)+Sb(2)O(3)/MnO(x), following Ti/SnO(2)+Sb(2)O(3)/RuO(2)+PbO(2). The accelerated life tests at 60 degrees C and in 1.0 mol L(-1) aqueous H(2)SO(4) with an anodic current density of 4.0 Acm(-2) show that the service life is prolonged when the SnO(2)+Sb(2)O(3) interlayer coating are inserted between Ti substrate and active layers.  相似文献   

9.
This paper presents the study of the electrochemical oxidation of the pesticide atrazine at a Ti/Ru(0.3)Ti(0.7)O(2) dimensionally stable anodes (DSA). The effect of using different supporting electrolytes (NaCl, NaOH, NaNO(3), NaClO(4), H(2)SO(4) and Na(2)SO(4)) during the galvanostatic electrolysis of atrazine was investigated. It was observed that the removal of atrazine and total organic carbon (TOC) was only achieved at appreciable rates when NaCl was used as the supporting electrolyte, due to the oxidising species formed in this electrolyte (e.g. ClO(-)). Variation of the NaCl concentration demonstrated that, although only low concentrations of NaCl are necessary to result in the complete removal of atrazine in solution, TOC removal is almost linearly dependent on the quantity of NaCl in solution. Examination of the applied current density indicates that the efficiency of TOC removal reaches a maximum at 60 mA cm(-2). Testing of alternative electrode materials containing SnO(2) did not improve the efficiency of atrazine removal in Na(2)SO(4), but in NaCl a small increase was observed. Overall there appears to be no great advantage in using SnO(2)-containing electrodes over the Ti/Ru(0.3)Ti(0.7)O(2) electrode.  相似文献   

10.
The biodegradability of surfactants is a frequent and complex issue arising both at domestic as well as industrial treatment facilities. In the present experimental study, the integrated photochemical (H2O2/UV-C) and biochemical (activated sludge) treatment of a commercial grade nonionic/anionic textile surfactant formulation was investigated. Photochemical baseline experiments have shown that once the initial pH and H2O2 dose were optimized, practically complete COD removal (CODo = 500 ± 30 mg L−1) could be achieved. Once the COD was elevated to values being typical for the textile fabric preparation stage, treatment efficiency was seriously retarded provided that the photochemical treatment conditions remained constant. Moreover, a definite relationship existed between H2O2 consumption and COD removal for H2O2/UV-C advanced oxidation of the textile surfactant. In the second part of the study, COD abatement was modeled for the biodegradation of untreated and photochemically pretreated textile surfactant formulation according to their COD fractions. Results have indicated that the readily biodegradable and rapidly hydrolysable COD fractions of the textile surfactant solution could be appreciably increased upon exposure to an optimum H2O2 concentration (60 mM; i.e. 2.1 g H2O2 (g CODo)−1) and extended UV-C irradiation times (i.e. 90 and 120 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号