首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a spatial and temporal analysis of child pedestrian crash data in Santiago, Chile during the period 2000–2008. First, this study identified seven critical areas with high child pedestrian crash risk employing kernel density estimation, and subsequently, statistically significant clusters of the main attributes associated to these crashes in each critical area were determined in a geographic information systems environment. Moran's I index test identified a positive spatial autocorrelation on crash contributing factors, time of day, straight road sections and intersections, and roads without traffic signs within the critical areas during the studied period, whereas a random spatial pattern was identified for crashes related to the age attribute. No statistical significance in the spatial relationship was obtained in child pedestrian crashes with respect to gender, weekday, and month of the year. The results from this research aid in determining the areas in which enhanced school-age child pedestrian safety is required by developing and implementing effective enforcement, educational, and engineering preventive measures.  相似文献   

2.
Intersections are hazardous locations and many studies have been conducted to identify the factors contributing to the frequency and severity of intersection crashes. However, little attention has been devoted to investigating the differences between crashes at urban and rural intersections, which have different road, traffic and environmental characteristics. By applying a random parameters probit model to the data from the Canadian Province of Alberta between 2008 and 2012, we find that urban intersection crashes are more likely to be associated with hit and run behaviours, roads with higher traffic volume, wet surfaces, four lanes and skewed intersections, and crashes on weekdays and off-peak hours, whereas rural crashes are likely to be associated with increases in fatalities and injuries, roads with higher speed limits, special road features, exit and entrance terminals, gravel, curvature and two lanes, crashes during weekends, peak hours and night-time, run-off-road crashes, and police visit to crash scene. Hence, road safety professionals in urban and rural areas should consider these differences when designing and implementing counter-measures to improve intersection safety, especially their safety audits and reviews, enforcement activities and education campaigns, to target the more vulnerable times and locations in the different areas.  相似文献   

3.
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes.  相似文献   

4.
Most traffic crashes in Chinese cities occur at signalized intersections. Research on the intersection safety problem in China is still in its early stage. The recent development of an advanced traffic information system in Shanghai enables in-depth intersection safety analyses using road design, traffic operation, and crash data. In Shanghai, the road network density is relatively high and the distance between signalized intersections is small, averaging about 200 m. Adjacent signalized intersections located along the same corridor share similar traffic flows, and signals are usually coordinated. Therefore, when studying intersection safety in Shanghai, it is essential to account for intersection correlations within corridors. In this study, data for 195 signalized intersections along 22 corridors in the urban areas of Shanghai were collected. Mean speeds and speed variances of corridors were acquired from taxis equipped with Global Positioning Systems (GPS). Bayesian hierarchical models were applied to identify crash risk factors at both the intersection and the corridor levels. Results showed that intersections along corridors with lower mean speeds were associated with fewer crashes than those with higher speeds, and those intersections along two-way roads, under elevated roads, and in close proximity to each other, tended to have higher crash frequencies.  相似文献   

5.
Crashes occurring on rural two-lane highways are more likely to result in severe driver incapacitating injuries and fatalities. In this study, mixed logit models are developed to analyze driver injury severities in single-vehicle (SV) and multi-vehicle (MV) crashes on rural two-lane highways in New Mexico from 2010 to 2011. A series of significant contributing factors in terms of driver behavior, weather conditions, environmental characteristics, roadway geometric features and traffic compositions, are identified and their impacts on injury severities are quantified for these two types of crashes, respectively. Elasticity analyses and transferability tests were conducted to better understand the models’ specification and generality. The research findings indicate that there are significant differences in causal attributes determining driver injury severities between SV and MV crashes. For example, more severe driver injuries and fatalities can be observed in MV crashes when motorcycles or trucks are involved. Dark lighting conditions and dusty weather conditions are found to significantly increase MV crash injury severities. However, SV crashes demonstrate different characteristics influencing driver injury severities. For example, the probability of having severe injury outcomes is higher when vans are identified in SV crashes. Drivers’ overtaking actions will significantly increase SV crash injury severities. Although some common attributes, such as alcohol impaired driving, are significant in both SV and MV crash severity models, their effects on different injury outcomes vary substantially. This study provides a better understanding of similarities and differences in significant contributing factors and their impacts on driver injury severities between SV and MV crashes on rural two-lane highways. It is also helpful to develop cost-effective solutions or appropriate injury prevention strategies for rural SV and MV crashes.  相似文献   

6.
As automobile transportation continues to increase around the world, bicyclists, pedestrians, and motorcyclists, also known as vulnerable road users (VRUs), will become more susceptible to traffic crashes, especially in countries where traffic laws are poorly enforced. Many countries, however, are employing innovative strategies to ensure that road users can more safely navigate the urban landscape. While bicyclists and motorcyclists are important road users, this paper will focus on pedestrian crash problems and solutions. Pedestrians are most at risk in urban areas due in part to the large amount of pedestrian and vehicle activity in urban areas. With this in mind, designing safe, accessible, and comprehensive facilities for pedestrians is vital to reducing pedestrian crashes. This paper will provide some insight into the magnitude of the pedestrian crash problem around the world, and will offer some lessons learned from several countries, particularly in Europe and the U.S., for improving pedestrian safety. Beginning with pedestrian safety statistics at the global, regional, and national levels, this paper will address potential countermeasures and strategies for improving pedestrian safety from an international perspective.  相似文献   

7.
Rural two-lane roads generally lack physical measures such as wide medians or barriers to separate opposing traffic flows. As a result, a major crash problem on these roads involves vehicles crossing the centerline and either sideswiping or striking the front ends of opposing vehicles. These types of opposing-direction crashes account for about 20% all fatal crashes on rural two-lane roads and result in about 4500 fatalities annually in the US. The present study evaluated a potential engineering countermeasure for such crashes—installation of rumble strips along the centerlines of undivided rural two-lane roads to alert distracted, fatigued, or speeding motorists whose vehicles are about to cross the centerlines and encroach into opposing traffic lanes. Data were analyzed for approximately 210 miles of treated roads in seven states before and after installation of centerline rumble strips. An empirical Bayes before–after procedure was employed to properly account for regression to the mean while normalizing for differences in traffic volume and other factors between the before and after periods. Overall results indicated significant reductions for all injury crashes combined (14%, 95% confidence interval (95% CI)=5–23%) as well as for frontal and opposing-direction sideswipe injury crashes (25%, 95% CI=6–44%)—the primary target of centerline rumble strips. In light of their effectiveness and relatively low installation costs, consideration should be given to installing centerline rumble strips more widely on rural two-lane roads to reduce the risk of frontal and opposing-direction sideswipe crashes.  相似文献   

8.
Urban road safety management is usually characterized by the lack of sufficient, good quality crash data and low budgets to obtain it even though many traffic accidents occur there. For example, 54 percent of road crashes in Spain take place in urban areas, and 10 percent of urban fatal crashes occur on crosstown roads, which are rural roads that traverse small communities. Traffic calming measures (TCMs) are often implemented on these parts of rural roads that traverse small communities in order to reduce both the frequency and severity of crashes by lowering speeds, but evaluation of their effectiveness has been limited. The objective of this study was to develop a methodology using continuous speed profiles to evaluate the safety effectiveness of TCMs on crosstown roads as part of an integrated system in the absence of historical data. Given the strong relationship between speed and crash experience, safety performance can be related to speed. Consequently, speed can be used indirectly as a surrogate safety measure in the absence of crash and speed data.  相似文献   

9.
Investigation of road network features and safety performance   总被引:1,自引:0,他引:1  
The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models’ results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety.  相似文献   

10.
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention.  相似文献   

11.
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states.  相似文献   

12.
This study analyzes vehicle-pedestrian crashes at intersections in Florida over 4 years, 1999-2002. The study identifies the group of drivers and pedestrians, and traffic and environmental characteristics that are correlated with high pedestrian crashes using log-linear models. The study also estimates the likelihood of pedestrian injury severity when pedestrians are involved in crashes using an ordered probit model. To better reflect pedestrian crash risk, a logical measure of exposure is developed using the information on individual walking trips in the household travel survey. Lastly, the impact of average traffic volume on pedestrian crashes is examined. As a result of the analysis, it was found that pedestrian and driver demographic factors, and road geometric, traffic and environment conditions are closely related to the frequency and injury severity of pedestrian crashes. Higher average traffic volume at intersections increases the number of pedestrian crashes; however, the rate of increase is steeper at lower values of average traffic volume. Based on the findings in the analysis, some countermeasures are recommended to improve pedestrian safety.  相似文献   

13.
Crash statistics suggest that horizontal curves are the most vulnerable sites for crash occurrence. These crashes are often severe and many involve at least some level of injury due to the nature of the collisions. Ensuring the desired pavement surface condition is one potentially effective strategy to reduce the occurrence of severe accidents on horizontal curves. This study sought to develop crash injury severity models by integrating crash and pavement surface condition databases. It focuses on developing a causal relationship between pavement condition indices and severity level of crashes occurring on two-lane horizontal curves in Texas. In addition, it examines the suitability of the existing Skid Index for safety maintenance of two-lane curves. Significant correlation is evident between pavement condition and crash injury severity on two-lane undivided horizontal curves in Texas. Probability of a crash becoming fatal is appreciably sensitive to certain pavement indices. Data suggested that road facilities providing a smoother and more comfortable ride are vulnerable to severe crashes on horizontal curves. In addition, the study found that longitudinal skid measurement barely correlates with injury severity of crashes occurring on curved portions. The study recommends exploring the option of incorporating lateral friction measurement into Pavement Management System (PMS) databases specifically at curved road segments.  相似文献   

14.
Efficient geometric design and signal timing not only improve operational performance at signalized intersections by expanding capacity and reducing traffic delays, but also result in an appreciable reduction in traffic conflicts, and thus better road safety. Information on the incidence of crashes, traffic flow, geometric design, road environment, and traffic control at 262 signalized intersections in Hong Kong during 2002 and 2003 are incorporated into a crash prediction model. Poisson regression and negative binomial regression are used to quantify the influence of possible contributory factors on the incidence of killed and severe injury (KSI) crashes and slight injury crashes, respectively, while possible interventions by traffic flow are controlled. The results for the incidence of slight injury crashes reveal that the road environment, degree of curvature, and presence of tram stops are significant factors, and that traffic volume has a diminishing effect on the crash risk. The presence of tram stops, number of pedestrian streams, road environment, proportion of commercial vehicles, average lane width, and degree of curvature increase the risk of KSI crashes, but the effect of traffic volume is negligible.  相似文献   

15.
Nilsson (1981) proposed power relationships connecting changes in traffic speeds with changes in road crashes at various levels of injury severity. Increases in fatal crashes are related to the 4th power of the increase in mean speed, increases in serious casualty crashes (those involving death or serious injury) according to the 3rd power, and increases in casualty crashes (those involving death or any injury) according to the 2nd power. Increases in numbers of crash victims at cumulative levels of injury severity are related to the crash increases plus higher powers predicting the number of victims per crash. These relationships are frequently applied in OECD countries to estimate road trauma reductions resulting from expected speed reductions. The relationships were empirically derived based on speed changes resulting from a large number of rural speed limit changes in Sweden during 1967-1972. Nilsson (2004) noted that there had been very few urban speed limit changes studied to test his power model. This paper aims to test the assumption that the model is equally applicable in all road environments. It was found that the road environment is an important moderator of Nilsson's power model. While Nilsson's model appears satisfactory for rural highways and freeways, the model does not appear to be directly applicable to traffic speed changes on urban arterial roads. The evidence of monotonically increasing powers applicable to changes in road trauma at increasing injury severity levels with changes in mean speed is weak. The estimated power applicable to serious casualties on urban arterial roads was significantly less than that on rural highways, which was also significantly less than that on freeways. Alternative models linking the parameters of speed distributions with road trauma are reviewed and some conclusions reached for their use on urban roads instead of Nilsson's model. Further research is needed on the relationships between serious road trauma and urban speeds.  相似文献   

16.
Real-time crash risk prediction using traffic data collected from loop detector stations is useful in dynamic safety management systems aimed at improving traffic safety through application of proactive safety countermeasures. The major drawback of most of the existing studies is that they focus on the crash risk without consideration of crash severity. This paper presents an effort to develop a model that predicts the crash likelihood at different levels of severity with a particular focus on severe crashes. The crash data and traffic data used in this study were collected on the I-880 freeway in California, United States. This study considers three levels of crash severity: fatal/incapacitating injury crashes (KA), non-incapacitating/possible injury crashes (BC), and property-damage-only crashes (PDO). The sequential logit model was used to link the likelihood of crash occurrences at different severity levels to various traffic flow characteristics derived from detector data. The elasticity analysis was conducted to evaluate the effect of the traffic flow variables on the likelihood of crash and its severity.The results show that the traffic flow characteristics contributing to crash likelihood were quite different at different levels of severity. The PDO crashes were more likely to occur under congested traffic flow conditions with highly variable speed and frequent lane changes, while the KA and BC crashes were more likely to occur under less congested traffic flow conditions. High speed, coupled with a large speed difference between adjacent lanes under uncongested traffic conditions, was found to increase the likelihood of severe crashes (KA). This study applied the 20-fold cross-validation method to estimate the prediction performance of the developed models. The validation results show that the model's crash prediction performance at each severity level was satisfactory. The findings of this study can be used to predict the probabilities of crash at different severity levels, which is valuable knowledge in the pursuit of reducing the risk of severe crashes through the use of dynamic safety management systems on freeways.  相似文献   

17.
The influence of road curvature on fatal crashes in New Zealand   总被引:1,自引:0,他引:1  
Bends in roads can cause crashes but a recent study in the UK found that areas with mostly curved roads had lower crash rates than areas with straighter roads. This present study aimed to replicate the previous research in a different country. Variations in the number of fatal road crashes occurring between 1996 and 2005 in 73 territorial local authorities across New Zealand were modelled against possible predictors. The predictors were traffic flow, population counts and characteristics, car use, socio-economic deprivation, climate, altitude and road characteristics including four measures of average road curvature. The best predictors of the number of fatal crashes on urban roads, rural state highways and other rural roads were traffic flow, speed limitation and socio-economic deprivation. Holding significant factors constant, there was no evidence that TLAs with the most curved roads had more crashes than elsewhere. Fatal crashes on urban roads were significantly and negatively related to two measures of road curvature: the ratio of road length to straight distance and the cumulative angle turned per kilometre. Weaker negative associations on rural state highways could have occurred by chance. These results offer limited support to the suggestion that frequently occurring road bends might be protective.  相似文献   

18.
Rear-end crashes are a major type of traffic crashes in the U.S. Of practical necessity is a comprehensive examination of its mechanism that results in injuries and fatalities. Decision table (DT) and Naïve Bayes (NB) methods have both been used widely but separately for solving classification problems in multiple areas except for traffic safety research. Based on a two-year rear-end crash dataset, this paper applies a decision table/Naïve Bayes (DTNB) hybrid classifier to select the deterministic attributes and predict driver injury outcomes in rear-end crashes. The test results show that the hybrid classifier performs reasonably well, which was indicated by several performance evaluation measurements, such as accuracy, F-measure, ROC, and AUC. Fifteen significant attributes were found to be significant in predicting driver injury severities, including weather, lighting conditions, road geometry characteristics, driver behavior information, etc. The extracted decision rules demonstrate that heavy vehicle involvement, a comfortable traffic environment, inferior lighting conditions, two-lane rural roadways, vehicle disabled damage, and two-vehicle crashes would increase the likelihood of drivers sustaining fatal injuries. The research limitations on data size, data structure, and result presentation are also summarized. The applied methodology and estimation results provide insights for developing effective countermeasures to alleviate rear-end crash injury severities and improve traffic system safety performance.  相似文献   

19.
Road safety affects health and development worldwide; thus, it is essential to examine the factors that influence crashes and injuries. As the relationships between crashes, crash severity, and possible risk factors can vary depending on the type of collision, we attempt to develop separate prediction models for different crash types (i.e., single- versus multi-vehicle crashes and slight injury versus killed and serious injury crashes). Taking advantage of the availability of crash and traffic data disaggregated by time and space, it is possible to identify the factors that may contribute to crash risks in Hong Kong, including traffic flow, road design, and weather conditions. To remove the effects of excess zeros on prediction performance in a highly disaggregated crash prediction model, a bootstrap resampling method is applied. The results indicate that more accurate and reliable parameter estimates, with reduced standard errors, can be obtained with the use of a bootstrap resampling method. Results revealed that factors including rainfall, geometric design, traffic control, and temporal variations all determined the crash risk and crash severity. This helps to shed light on the development of remedial engineering and traffic management and control measures.  相似文献   

20.
Many studies have proposed the use of a systemic approach to identify sites with promise (SWiPs). Proponents of the systemic approach to road safety management suggest that it is more effective in reducing crash frequency than the traditional hot spot approach. The systemic approach aims to identify SWiPs by crash type(s) and, therefore, effectively connects crashes to their corresponding countermeasures. Nevertheless, a major challenge to implementing this approach is the low precision of crash frequency models, which results from the systemic approach considering subsets (crash types) of total crashes leading to higher variability in modeling outcomes. This study responds to the need for more precise statistical output and proposes a multivariate spatial model for simultaneously modeling crash frequencies for different crash types. The multivariate spatial model not only induces a multivariate correlation structure between crash types at the same site, but also spatial correlation among adjacent sites to enhance model precision. This study utilized crash, traffic, and roadway inventory data on rural two-lane highways in Pennsylvania to construct and test the multivariate spatial model. Four models with and without the multivariate and spatial correlations were tested and compared. The results show that the model that considers both multivariate and spatial correlation has the best fit. Moreover, it was found that the multivariate correlation plays a stronger role than the spatial correlation when modeling crash frequencies in terms of different crash types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号