首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以碳纳米管(CNT)和石墨烯(GNS)混合材料作为载体,采用微波还原法将PtRu纳米粒子负载到混合载体表面,制备了PtRu/CNT-GNS纳米催化剂。透射电镜(TEM)结果显示,PtRu纳米粒子均匀地分散在混合载体表面,粒径分布范围较窄,平均粒径约为2.17nm。电化学测试结果表明,与单一碳载体负载的催化剂PtRu/CNT相比,PtRu/CNT-GNS呈现出更高的甲醇氧化活性和更好的抗中毒能力。  相似文献   

2.
交叉共沉淀法制备Skutterudite纳米粉体的研究   总被引:1,自引:0,他引:1  
探索了交叉共沉淀法制备纳米方钴矿化合物CoSb3. 以钴和锑的氯化物为原料, NaOH和氨水为沉淀剂, 室温下调节pH=5~10, 经过滤、洗涤、超声分散和真空干燥后得到了Co(OH)2和Sb2O3前驱体. 研究了还原热处理过程中还原气氛、温度、时间、原料配比对还原产物的相组成和粉体粒径的影响. 结果表明, 采用纯H2为还原气氛, 500℃下还原3h, 当Sb/Co摩尔比为3.15时, 可得到粒径均匀、平均粒径约为100nm的单相CoSb3粉体.  相似文献   

3.
催化剂的碳载体腐蚀是Pt/C催化剂催化性能下降的重要原因,并且亲水性的催化剂增加了质子交换膜燃料电池氧电极发生水淹的风险。利用过氧化氢对XC-72碳进行氧化预处理,负载Pt后,进一步用水合肼对Pt/C催化剂还原,制备耐蚀性和抗溺水性的Pt/C催化剂。对红外光谱吸收峰进行比较可知,经双氧水处理后,XC-72碳表面的含氧官能团数量增加,其接触角小于未经处理的XC-72碳;进一步用水合肼还原氧化后的XC-72碳,接触角较氧化的XC-72碳增大22.4°,抗溺水性增强。由比表面积测定可知,双氧水处理XC-72碳,比表面积下降,但中孔比例增加,有利于Pt的负载。水合肼还原后的Pt/C催化剂较还原之前的Pt/C催化剂抗溺水性增强,接触角增大6.2°。经2000周次循环伏安扫描,水合肼还原后的Pt/C催化剂电化学比表面损失减小,耐久性提高。  相似文献   

4.
制备了烟碱/磷酸化壳聚糖纳米粒子水分散液。扫描电镜和激光散射结果表明,在pH值4.0~4.8之间,形成了稳定的烟碱/磷酸化壳聚糖纳米粒子。纳米粒子分散液的pH值从4.0上升到4.8,纳米粒子分散液的Zeta-电位下降。磷酸化壳聚糖和烟碱的体积比从2升至6,烟碱/磷酸化壳聚糖纳米粒子的粒径减小;纳米粒子的粒径随磷酸化壳聚糖溶液浓度的升高而显著增大。烟碱/磷酸化壳聚糖纳米粒子的平均粒径在300 nm~800 nm。随磷酸化壳聚糖和烟碱的质量比增大,烟碱/磷酸化壳聚糖纳米粒子的负载率增大,纳米粒子对烟碱的包封效率可以达到88.8%。  相似文献   

5.
水热法制备过程中TiO2纳米纤维成形机理研究   总被引:1,自引:0,他引:1  
采用水热法制备出φ20~30nm, 长度达微米级的TiO2纳米纤维, 以XRD、TEM、IR等手段对不同工艺条件下获得的产物晶型结构、微观形貌以及化学组成进行了表征, 对TiO2纳米纤维成形机理进行探讨, 并就洗涤过程中pH值对纤维结构的影响进行分析. 结果表明, TiO2纳米纤维的形成机理可能是锐钛矿型TiO2纳米颗粒在强碱作用下生成K2Ti6O13颗粒, 小颗粒沿一定晶轴生长, 遵循溶解-生长机理, 逐渐长成纳米纤维. 清洗溶液的pH值对产物的成分和结构有较大影响, 通过控制清洗溶液的pH值和热处理温度, 可以获得组成分别为K2Ti6O13、H2Ti3O7和TiO2的纳米纤维. 在pH=7、80℃烘干条件下得到的主要是H2Ti3O7纳米纤维, 400℃煅烧后转变为TiO2纳米纤维.  相似文献   

6.
溶液pH对液相沉积氢氧化镍薄膜的影响   总被引:1,自引:1,他引:0  
采用液相沉积法在不同pH值溶液中制备了多孔氢氧化镍(Ni(OH)2)薄膜. 当溶液pH值在7.5~8.8之间变化时, 能在基片上形成均匀连续的由Ni(OH)2纳米棒搭接组成的多孔薄膜, 主要晶型为β-Ni(OH)2. 溶液pH值的微小变化会引起薄膜中棒状Ni(OH)2尺寸的显著改变: 当pH=7.5时, Ni(OH)2纳米棒的长度约为80nm, 直径约为50nm; 当pH=7.8时, Ni(OH)2纳米棒的长度增大到180nm, 直径约为60nm; 当pH=8.0时, Ni(OH)2纳米棒的长度显著增大约为300nm, 直径约为70nm. 然而, 当pH=8.3时, Ni(OH)2纳米棒的长度减小约为230nm, 直径约为80nm; 当pH=8.8时, 纳米棒长度迅速减小约为110nm, 直径减小约为55nm. 结合Ni(OH)2成核、生长过程和β-Ni(OH)2晶体结构特点讨论了溶液pH值对Ni(OH)2薄膜微观形态的影响机制.  相似文献   

7.
高分散度Pt/C电催化剂的制备   总被引:3,自引:1,他引:2  
Cabot公司Vulcan XC-72型炭黑,经过H2O2氧化处理后作为Pt的载体,H2PtCl6作为金属前驱体制备了高度分散的Pt/C催化剂。讨论了不同条件下H2PtCl6在炭黑上的吸附性能。载体经过H2O2氧化处理24h,H2PtCl6在pH=9下吸收48h,H2 350℃还原2h,可以制备出铂晶粒平均大小为1.8nm的Pt/C电催化剂。  相似文献   

8.
采用体积分数30%的H2O2处理碳包覆铁纳米粒子外层的非晶态类石墨碳层,并将其超声分散于水介质中,通过改变pH值分析测定碳包覆铁纳米粒子表面zeta电位和粒径。结果表明:碳包覆铁纳米粒子非晶碳层的特殊结构可通过双氧水化学处理使其表面产生羧基和羟基;在强碱性介质下,羟基和羧基可强化颗粒间的静电斥力,提高碳包覆铁纳米粒子在水介质中的分散性能。当pH值约为11.5时,碳包覆铁纳米粒子表面zeta电位为48 mV,水合粒子粒径可达到110 nm。  相似文献   

9.
分别采用乙二醇(EG)和H2O为溶剂,通过NaBH4还原法在酸性pH≤2和碱性pH≥12条件下制备了铂担裁量为20%(质量分数)的Pt/C催化剂,利用TEM、CV及LSV等方法对催化剂进行了表征与测试,考察了EG在NaBH4还原法中对铂纳米颗粒的稳定作用.结果表明,EG作溶剂、碱性pH≥12时,通过NaBH4还原法制备得到了平均粒径约2.5nm、粒径分布窄、在碳裁体上分散均匀的Pt/C催化荆;该催化剂的电化学比表面为74.4m2/g Pt,0.8V vs NHE时通过LSV得到的单位质量铂对甲醇电催化氧化的电流密度为229.1mA/mg Pt,分别是相同条件下H2O作溶剂时制备得到的Pt/C催化剂的5.倍和5.3倍.  相似文献   

10.
借助原位还原法,成功地将铂纳米粒子负载在一种具有微管簇形貌的植物载体-剑麻纤维中,负载的铂纳米粒子的平均粒径约为3.6nm.通过在400℃下碳化这种含有铂纳米粒子的剑麻纤维,得到铂纳米粒子/碳纤维复合材料,这种碳纤维保留了原来剑麻纤维的微管簇形貌.剑麻纤维中相邻的微管壁和它们所夹的胞间层在碳化反应之后,融为一体,变成了均一的碳微管壁.虽然碳化后铂纳米粒子的平均粒径增大到5.3m左右,但是生成的载体碳纤维还是有效地阻止了铂纳米粒子的生长.这种铂纳米粒子/碳纤维复合材料兼具微管簇结构、碳纤维载体和活性铂纳米粒子的优点,很可能成为一种新型的异相催化剂,在很多领域中具有开发前景.  相似文献   

11.
通过乙二醇还原,在VulcanXC-72炭黑上负载了三种具有不同平均粒径(1.7nm,3.0nm和5.0nm)的Pt催化剂。利用透射电子显微镜,研究了载体炭黑表面的微孔与Pt催化剂之间的几何相互作用。结果表明:尺寸较小的Pt颗粒(平均粒径为1.7nm)通常被包含在载体表面的微孔中,表现为被一薄碳层所覆盖并嵌入炭黑基体。而尺寸较大的Pt颗粒(平均粒径为3.0nm和5.0nm)则不存在这种现象,往往显示出裸露的清洁表面。这种与载体表面微孔的不同相互作用引起了Pt颗粒在电化学活性比表面上的反常尺寸效应,进而影响了其催化甲醇氧化的质量比活性。  相似文献   

12.
Microwave heating was employed to prepare highly dispersed Pt/C catalyst. Uniform platinum nanoparticles with average diameter of about 3.0-5.0 nm dispersed on carbon materials (XC-72) were synthesized using a domestic microwave oven. Synthesized Pt/C materials were characterized by X-ray diffraction and transmission electron microscopy. The particle size and size distribution of Pt nanoparticles greatly depend on microwave irradiation duration, where the heating temperature rises rapidly as the process proceeds. Cyclic voltammetry demonstrates that Pt/C catalysts derived from microwave irradiation for 90 s exhibits higher catalytic activity than a commercial Pt/C catalyst (E-Tek) at room temperature. The improvement in electrocatalytic activity of synthesized Pt/C materials is attributed to uniformity of particle size, well dispersion and high surface area, which is obtained around 175 °C and irradiation for 90 s.  相似文献   

13.
A novel polymer–carbon (PTh–C) nanocomposites containing different percentages of polythiophene (10, 20 and 50% (w/w)) and carbon (Vulcan XC-72) was prepared by a facile solution dispersion method and used to support platinum nanoparticles. The effect of using different percentages of polythiophene in nanocomposites and subsequently prepared electrocatalysts was investigated. The resultant electrocatalysts were extensively characterized by physical (X-ray diffraction (XRD) and transmission electron microscopy (TEM)) and electrochemical (cyclic voltammetry (CV)) techniques. The TEM results showed that the fine Pt nanoparticles prepared by ethylene glycol (EG) method were distributed on the surface of the 50% PTh–C nanocomposites successfully. From the XRD patterns, the average size of dispersed Pt nanoparticles with the face-centered cubic (fcc) structure on 50% PTh–C, 20% PTh–C, 10% PTh–C and carbon were about 4.9, 5.2, 5.4 and 6.1 nm, respectively. The conductivity of PTh–C with different percentages of pure PTh was compared with the conductivity of the corresponding support of pure PTh. It is observed that the conductivity of 50% PTh–C nanocomposites is about 600 times higher than that of pure PTh. Finally, CV measurements of hydrogen and methanol oxidations indicated that Pt/50% PTh–C had a higher electrochemical surface area and higher catalytic activity for methanol oxidation reaction compared to other electrocatalysts. These measurements showed that the Pt/50% PTh–C electrocatalyst by the value of 3.85 had higher \(I_{\mathrm{f}}/I_{\mathrm{b}}\) ratio with respect to Pt/10% PTh–C and Pt/20% PTh–C by the values of 2.66 and 2.0, respectively.  相似文献   

14.
Two carbons were synthesized for use as platinum electrocatalyst supports for methanol oxidation. For both materials, furfuryl alcohol was used as the carbon precursor; however, one (CPEG) was made using poly ethylene glycol as the pore former, while the other (CSRF) was produced using Pluronic® F127 as the soft template by organic–organic self-assembly. The CPEG and CSRF carbons were estimated from nitrogen physisorption experiments to be micro- and mesoporous, respectively. Platinum nanoparticles were deposited on each carbon as well as on Vulcan XC-72 carbon by the formic acid reduction method. The physicochemical properties of electrocatalysts were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX), and their electrochemical features were examined using cyclic voltammetry, chronoamperometry, and impedance spectroscopy. It was found that higher methanol oxidation peak current densities as well as lesser charge transfer resistance at electrode/electrolyte interface were obtained for Pt supported on CSRF as compared to those on Vulcan XC-72 carbon, owing to the higher specific surface area and larger total pore volume (696 m2 g−1 and 0.60 cm3 g−1, respectively) together with superior electrical conductivity of mesoporous CSRF. On the other hand, the lower surface area and pore volume of microporous CPEG substrate confined Pt nanoparticles deposition and thus made CPEG-supported Pt an inefficient methanol oxidation electrocatalyst.  相似文献   

15.
Due to the inherent inertness of multi-wall carbon nanotubes (MWCNTs), complicated procedures are involved in the preparation of MWCNT-supported catalysts. In this paper, a facile and effective method is introduced to prepare Pt nanoparticles dispersed on the surface of purified MWCNTs. In this method, sodium phthalate (SP) is used as a special additive to function as an effective cross linker between MWCNTs and Pt ions, and ethylene glycol (EG) aqueous solution is used as an effective solvent. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses reveal that the prepared face-centered cubic Pt nanoparticles with the average diameter of 2.2 nm are well dispersed on the surface of the MWCNTs. Cyclic voltammetry and chronoamperometry tests demonstrate that the Pt/MWCNTs catalyst obtained from typical experiment exhibits better catalytic activity and stability for methanol electrooxidation than the Pt catalyst supported on conventional acid-treated MWCNTs (AO-MWCNTs) and JM commercial 20% Pt/C catalyst.  相似文献   

16.
An extremely durable and highly active Pt catalyst has been successfully prepared by embedding Pt(0) nanoparticles inside the pores of the nitrogen-dotted porous carbon layer surrounding carbon nanotubes (Pt@NC-CNT). The Pt@NC-CNT catalyst has a high BET surface area of 271 m(2) g(-1) (62 m(2) g(-1) for Pt/XC-72) and comparably high electrochemically active surface area of 64.3 m(2) g(-1) (68.2 m(2) g(-1) for Pt/XC-72). The prepared Pt nanoparticles are small in size (2.8 ± 1.3 nm) and have a strong interaction of nitrogen to platinum, as evidenced by the binding energy observed at 399.5 eV. The maximum current densities (I(f)) during methanol oxidation observed for Pt@NC-CNT (13.2 mA cm(-1)) is 1.2 times higher than that of Pt/XC-72 (10.8 mA cm(-1)) catalysts. Remarkably, in the long term durability test, the I(f) after 1000 cycles for Pt@NC-CNT decreased to 10.6 mA cm(-1) compared with Pt/XC-72, which decreased to 2.6 mA cm(-2). This means that the Pt@NC-CNT catalyst has a tremendously stable electrocatalytic activity for MOR because of the unique structure of Pt@NC-CNT formed in this novel synthesis technique.  相似文献   

17.
A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.  相似文献   

18.
N-doped porous carbon nanospheres (PCNs) were prepared by chemical activation of nonporous carbon nanospheres (CNs), which were obtained via carbonization of polypyrrole nanospheres (PNs). The catalysts, PtRu and Pt nanoparticles supported on PCNs and Vulcan XC-72 carbon black, were prepared by ethylene glycol chemical reduction. Transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were employed to characterize samples. It was found that PCNs containing N function groups possess a large number of micropores. Uniform and well-dispersed Pt and PtRu particles with narrow particle size distribution were observed. The electrooxidation of liquid methanol on these catalysts was investigated at room temperature by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). The results showed that alloy catalyst (Pt(1)Ru(1)/PCN) possessed the highest catalytic activity and better CO tolerance than the other PtRu and Pt-only catalysts; PtRu nanoparticles supported on PCN showed a higher catalytic activity and more stable sustained current than on carbon black XC-72. Compared to commercial Alfa Aesar PtRu catalyst, Pt(1)Ru(1)/PCN reveals an enhanced and durable catalytic activity in methanol oxidation because of the high dispersion of small PtRu nanoparticles and the presence of N species of support PCNs.  相似文献   

19.
陈宽  田建华  林娜  单忠强 《功能材料》2012,43(12):1594-1597
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,再经低温热解膨胀得到膨胀石墨;采用微波加热乙二醇法同时还原膨胀石墨和PtClO2-6离子得到铂/石墨烯(Pt/Gr)复合材料.分析了反应前溶液的pH值、微波加热时间以及乙二醇中水含量对Pt/Gr结构及催化性能的影响.通过循环伏安法对Pt/Gr的电化学性能进行了表征.采用透射电镜和扫描电镜观察了Gr和Pt/Gr的表面结构.研究结果表明,在优化的实验条件下可以得到高负载量高分散性的Pt/Gr纳米复合材料.实验得到的40%(质量分数)Pt/Gr的Pt粒子粒径分布在3.0~3.3nm范围内,对氢电极和氧电极反应有高催化活性,可作为质子交换膜燃料电池的电催化剂.  相似文献   

20.
Single wall carbon nanohorns (SWNH), produced by AC arc discharge in air, were used as Pt and PtRu supports in polymer electrolyte membrane fuel cells (PEMFC). These electrocatalysts were compared with equivalent electrocatalysts supported on commercial carbon back. The SWNH were characterized by differential thermal analysis (DTA), TEM, SEM, and XRD. The produced SWNH were 84.5 wt% pure, containing 3 wt% of amorphous carbon and 12.5 wt% of graphitic carbon. SWNH were used as electrocatalyst supports and tested in the electrodes of two types of polymer electrolyte fuel cells: H2-fed PEMFC and direct methanol fuel cells (DMFC). The electrocatalyst nanoparticles anchored on both carbon supports were ca. 2.5 nm in diameter obtained by employing ethylene glycol as the reducing agent. The use of SWNH showed catalytic activities 60% higher than using carbon black as the electrocatalyst support in both types of fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号