The role of bromide ion in the trihalomethane (THM) formation and structure of dissolved organic matter (DOM) during chlorination of the secondary effluent taken from the Wenchang Wastewater Treatment Plant (Harbin, China) was investigated. DOM was fractionated using XAD resins into five fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). The patterns of individual THM species with increased bromide concentrations were similar for all DOM fractions. The THM speciation as well as halogen fraction for these five fractions followed similar trends with the Br(-)/Cl(2) ratio. Chlorination resulted in decreased ultraviolet (UV) absorbance across wavelengths from 250 to 280 nm for DOM fractions whether bromide ions existed or not, and bromide addition led to lower differential UV absorbance values. Fourier-transform infrared (FT-IR) results indicated that chlorination, whether bromide ions existed or not, resulted in the near elimination of aromatic CH and amide peaks, increased CO absorption intensity and occurrence of CO and CCl peaks for HPO-A, HPO-N, TPI-A and TPI-N. Furthermore, bromide addition in chlorination led to the occurrence of CBr peak for all four fractions. 相似文献
Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy is an important tool for bioimaging since it possesses the ability to penetrate deep into biological tissues. Herein, we used AIE luminogen together with multiphoton microscopy for long-term imaging of zebrafish. A typical AIE luminogen, 2,3-bis(4-(phenyl(4- (1,2,2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), was encapsulated with 1,2-distearoyl-sn-glycero-3-phosphoethanola-mine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) to form nanodots that exhibited bright three-photon fluorescence under 1,560 nm-femtosecond (fs) laser excitation. The TTF-nanodots were chemically stable in a wide range of pH values and showed no in vivo toxicity in zebrafish according to a series of biological tests. The TTF-nanodots were microinjected into zebrafish embryos, and the different growth stages of the labeled embryos were monitored with a three-photon fluorescence microscope. TTF-nanodots could be traced inside the zebrafish body for as long as 120 hours. In addition, the TTF-nanodots were utilized to target the blood vessel of zebrafish, and three-photon fluorescence angiogram was performed. More importantly, these nanodots were highly resistant to photobleaching under 1,560 nm-fs excitation, allowing long-term imaging of zebrafish.
For three decades airborne laser-induced fluorescence has demonstrated value for chlorophyll biomass retrieval in wide-area oceanic field experiments, satellite validation, and algorithm development. A new chlorophyll biomass retrieval theory is developed using laser-induced and water Raman normalized fluorescence of both (a) chlorophyll and (b) chromophoric dissolved organic matter (CDOM). This airborne lidar retrieval theory is then independently confirmed by chlorophyll biomass obtained from concurrent (1) ship-cruise retrievals, (2) satellite inherent optical property (IOP) biomass retrievals, and (3) satellite standard band-ratio chlorophyll biomass retrievals. The new airborne lidar chlorophyll and CDOM fluorescence-based chlorophyll biomass retrieval is found to be more robust than prior lidar methods that used chlorophyll fluorescence only. Future research is recommended to further explain the underlying influence of CDOM on chlorophyll production. 相似文献
To evaluate the influences of sewage sludge-derived organic matters on metal sorption and on the resultant sludge loading estimates, a batch experiment was conducted to compare the sorption of Ni, Cu and Pb in sewage sludge filtrates (1:20 sewage sludge to water) on eight soils and the adsorption of metals in a reference solution which had the same matrix as the sewage sludge filtrate except dissolved organic material (henceforth referred to as reference solution). Metal sorption could be well fitted by linear isotherm and the dissolved organic matter in sludge significantly depressed the sorption (p<0.01). The main factor controlling sorption of Ni on different soils was dominated by soil cation exchange capacity (CEC) and sorption of Cu and Pb was by soil organic matter (SOM). The parameters obtained from the sorption isotherm equations were then used to estimate sludge loadings into the soils. When the sorption parameters derived from the reference solution were used for calculation, that is the effect of dissolved organic matter was not considered, the calculated safe application rates are approximately 47.8, 51.4, 34.2, 31.3, 21.7, 46.3, 187.1 and 27.6 t-sludge/ha for the Beijing, Jiangxi, Xiamen, Jilin, Guangdong, Wuhan, Gansu and Xinjiang soils, respectively. However, when the sorption parameters derived from the dissolved organo-metallic complexes are used for calculation, the corresponding application rates are reduced to approximately 6.0, 3.4, 1.9, 10.0, 6.3, 3.6, 7.3 and 3.5 t-sludge/ha, respectively. By this study we can get a conclusion that the effect of sewage sludge derived dissolved organic matter on heavy metal sorption and soil properties should be considered in the course of regulating the safe application rates of sewage sludge to soil. 相似文献
Abstract The adsorption of heavy metals on soil from the Neihu Landfill Site in Taipei City was investigated in order to assess the ground water pollution problems. The effects of soil organic matter and the behaviors of organic complexing ligands like EDTA and humic acid to the overall adsorption process were studied and discussed. In explaining the results, the pH of soil system and the properties of the soil/aqueous interface were chosen as two significant and interacting factors for discussion. The concept of the specific adsorption mechanism was also demonstrated and discussed. The results showed that the complexing ligands existing in soil liquid phase have more influences than natural organic matter does. The competitive sequences of different organic matter contents indicated that organic functional sites preferentially bind with Cu and Cd. The presence of EDTA and humic acid which formed ligandlike complexes will reduce Cd adsorption efficiency. These effects will induce mobility and the fate of heavy metals in soils, such as bioavailability. 相似文献
Dissolved organic matter (DOM) obtained from landfill leachates was separated into hydrophobic base, hydrophilic matter (HIM), hydrophobic acid (HOA), and hydrophobic neutral fractions. The composition and transformation of the DOM and its fractions were investigated. The results show that the DOM isolated from young, intermediate, and old landfill leachates were mainly composed of tyrosine-, tryptophan-, and humic- and fulvic-like substances, respectively. The primary fractions of the DOM in leachates were HOA and HIM. The HOA and HIM fractions from young leachates predominantly contained tryptophan- and tyrosine-like materials, respectively. The HOA fractions in intermediate and old leachates were mainly composed of humic- and fulvic-like materials, whereas the HIM fractions were dominated by tryptophan-like materials and humic- and fulvic-like substances. The hydrophobic organic fractions and humic- and fulvic-like substances increased with time, whereas the HIM and the tyrosine-like materials decreased during the landfill process, rendering biological processing of leachates ineffective. 相似文献