首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 130 毫秒
1.
通过PVDF传感器测量振动板结构的声辐射模态伴随系数   总被引:4,自引:3,他引:4  
基于声辐射模态理论进行ASAC控制系统中的一个重要内容就是获得声辐射模态伴随系数。以简支板为例,设计了一种新的PVDF(POLYVINYLIDENE FLUORIDE聚偏氟乙烯)压电传感器,用来测量板的前3阶声辐射模态伴随系数。由仿真计算结果表明,在中低频率,测量第一阶声辐射模态伴随系数时,只需要在板布置两条PVDF传感器即可;测量第二、三阶声辐射模态伴随系数时,可在板上布置多条传感器能得到比较精确的结果。同时PVDF传感器测量的结果与理论相符,说明这种新型PVDF压电传感器的设计是可行的。  相似文献   

2.
在低频时控制振动板结构的体积位移是降低结构总声功率的一种有效策略.提出一种阵列式压电式传感器的设计方法测量固定板体积位移.通过对PVDF传感器阵列输出信号设计的加权系数,使PVDF传感器阵列输出信号为相应结构体积位移.结果表明这种阵列式PVDF传感器的加权系数与施加在振动板表面的外激励力性质(如激励力类型、位置等)无关.并且分析了影响阵列式PVDF传感器的各种因素及其适应性.  相似文献   

3.
任意边界梁的声辐射模态伴随系数测量   总被引:3,自引:0,他引:3  
声辐射模态伴随系数的获取是基于声辐射模态理论进行ASAC控制中的重要环节。该文在声辐射模态理论及一维分布式压电传感器方程基础上,以Fourier级数展开的方法,给出了梁结构PVDF传感器形状与边界条件无关的设计方法。由此得到的传感器可以用于任意边界条件与任意速度分布,拓宽了其应用范围。并以简支梁、固定梁和悬臂梁为例,测量得到了各自的第一、二阶声辐射模态伴随系数。并对实验数据进行了分析比较。  相似文献   

4.
根据声辐射模态的特点提出四组控制力布置方法。在此基础上采用Η∞算法设计了四个独立的控制器,控制前四阶声辐射模态的伴随系数使辐射声功率最小化。该方法能够将复杂的四输入/四输出控制系统转化为四个独立的单输入/单输出系统,从而使得每组控制力可以单独控制对应阶声辐射模态的伴随系数。模拟仿真结果表明,该方法能够实现系统解耦控制,使辐射声功率明显降低。  相似文献   

5.
李直  黎胜  刘彦森 《声学技术》2014,33(4):317-321
由于水中结构的振动声辐射要考虑流体加载效应,因此水中结构声辐射的模态分析也与空气中的有所不同。基于辐射声功率的二次型表达式,采用有限元和Rayleigh积分耦合方法,对板结构的水下声功率模态进行了计算分析研究,通过辐射效率、模态振型和辐射声功率等探讨了其特点。结果表明以激励力为变量、考虑了结构阻抗的水下声功率模态具有各阶模态声辐射独立、低频时前几阶模态(特别是第1阶模态)的声辐射占主导地位、模态辐射效率峰值和模态振型物理意义清楚等特点,在水下结构振动声辐射的分析和控制方面有一定实用价值。  相似文献   

6.
以两端固支阶梯梁为例,通过高分子压电薄膜(Poly Vinyli Dene Fluoride,PVDF)传感器阵列测量其模态坐标。在该阶梯梁表面均匀黏贴一组相同形状的矩形PVDF薄膜,首先通过实验方法直接测得该阶梯梁的曲率模态,然后把曲率模态作为这组PVDF输出信号的加权因数,从而得到所需的模态坐标。实验结果表明,这种传感器设计方法是可行的,并且PVDF阵列式模态传感器具有在不均匀梁结构表面布置方便,能准确、方便的测出实验曲率模态,不受激励力位置影响,滤波效果好等优点。  相似文献   

7.
误差传感策略是实现主动结构声学控制的关键的一环。在中低频率时,控制振动结构前几阶声辐射模态可以有效控制总声功率,基于声辐射模态进行板结构主动声学控制的关键是如何获得前几阶声辐射模态伴随系数。在振动平板上测量少数点振动速度分布,利用声辐射模态性质,通过求解欠定方程,得到所需要的前N阶声辐射模态伴随系数。利用得到的前N阶声辐射模态伴随系数作为控制器的输入,形成基于声辐射模态的主动控制策略和相应的误差传感策略。以固定支撑板为例,从主动控制效果分析得到的结果与理论值一致,说明利用上述误差传感策略得到前几阶声辐射模态伴随系数是可行的。  相似文献   

8.
毛崎波  姜哲 《声学技术》2002,21(3):118-121,127
文章以简支平板为例 ,通过声辐射模态研究结构声辐射的有源控制。首先分析了声辐射模态的数学和物理意义。由于在中、低频时 ,声辐射模态对应的辐射效率随着模态阶数的增加而迅速降低。在此基础上 ,文中提出了一种新的控制策略 ,即抵消前k阶声辐射模态的伴随系数 ,使得前k阶声辐射模态的声功率为零。文中以压电陶瓷作动器作为控制力源进行了数值计算研究。并与传统的控制策略———声功率最小化策略进行了比较。  相似文献   

9.
基于结构振动响应特性利用改进的模态滤波方法对阵列式传感器系统进行故障诊断。在梁结构表面均匀布置一组加速度计,利用模态振型对该系统的输出信号进行重构,将重构信号与实际信号之间的曲率误差作为敏感参数,对系统中的模拟故障传感器进行检测与识别,并加以实验验证。数值计算和实验结果表明:改进的模态滤波方法不仅可以直接有效地对传感器系统进行实时故障监测,而且该方法与外界激励力位置无关,具有良好的工程应用前景。  相似文献   

10.
提出利用PVDF阵列直接测量结构曲率模态。在振动梁表面均匀布置一组PVDF压电薄膜,测量结构在外加点激励作用下的动态响应,得到频率响应函数,进而通过模态软件对数据进行分析,得到其曲率模态。数值分析和实验结果表明:利用PVDF阵列可以有效地测量得到结构的曲率模态,且方法与激励力位置无关。由于方法操作简便,PVDF压电薄膜附加质量可忽略不计,与常规通过模态振型计算曲率模态的方法相比具有明显优越性。  相似文献   

11.
基于PVDF压电传感器测量振动结构体积位移   总被引:1,自引:0,他引:1  
控制振动板结构的体积位移是降低结构总声功率的一种有效策略。本文以工程常见四端位移为零的振动板为例,提出一种新的压电式传感器的设计方法测量体积位移。利用正弦函数展开近似表示固定板振动位移,通过设计特殊形状的PVDF压电薄膜,使PVDF输出信号为所需要的振动结构体积位移。结果表明这种体积位移传感器不仅适用四边简支、四边固定以及介于两者之间的边界条件板结构,而且作为一种误差传感器测量振动结构体积位移是可行的。并对实验数据进行了分析比较。  相似文献   

12.
We present the design of a large-area (50 mm times 50 mm) polyvynilidene fluoride (PVDF) pyroelectric sensor array for industrial CO2 (lambda = 10.6 mum) laser beam positioning. The array dimensions were chosen to match the area typically monitored in the alignment procedure of external optics (beam steering moving arm system, for example) used to redirect the laser beam from the laser output window to a remote working station. The instrument is provided with a tilted, high reflection, ZnSe plate which partially transmits the laser beam onto the sensor array. From positioning simulations with a Gaussian laser intensity profile with a sigma = 3.2 mm standard deviation (equivalent spot size 3sigma cong 20 mm), the positional accuracy along the two orthogonal array dimensions was found to be better than 0.02 mm for an 8 times 8 array and one order of magnitude higher for a 16 times 16 array. The centroid position of a CO2 industrial laser beam was evaluated by integrating the pyroelectric current for a time comparable to the time duration (100-200 ms) of the laser pulses used in the alignment procedure.  相似文献   

13.
《IEEE sensors journal》2006,6(5):1170-1177
This paper describes a new type of contact vibration sensor made by bonding a piezoelectric polyvinylidene fluoride (PVDF) film to a curved frame structure. The concave surface of the film is bonded to a rubber piece having a front contact face. Vibration is transmitted from this face through the rubber to the surface of the PVDF film. Pressure normal to the surface of the film is converted to circumferential strain, and an electric field is induced by the piezoelectric effect. The frequency response of the device was measured using an accelerometer mounted between the rubber face and a rigid vibration exciter plate. Sensitivity (voltage per unit displacement) was deduced from the device output and measured acceleration. The sensitivity was flat from 16 Hz to 3 kHz, peaking at 6 kHz due to a structural resonance. A contact vibration sensor theory has been developed, which accounts for the effect of the radiation medium. It has been found that the imaginary part of the radiation impedance has an effect equivalent to the addition of mass to the curved PVDF film structure, which reduces the resonance frequency by about one order. Calculations predicting performance against human tissue (stethoscope or contact microphone) show results similar to data measured against the metal vibrator. This implies that an accelerometer can be used for calibrating a stethoscope or contact microphone. The observed arterial pulse waveform from the new PVDF sensor showed more low-frequency content than a conventional electronic stethoscope.  相似文献   

14.
Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with -28 dBc second harmonic at the surface of the array.  相似文献   

15.
振动板辐射噪声的结构主动控制   总被引:3,自引:0,他引:3  
吴卫国  王贵成  王志 《振动与冲击》2006,25(5):10-13,17
以平板为例,在时域里建立结构一声辐射模型,采用时域瑞利积分构造辐射算子,给出时域声辐射模态的计算公式;研究表明这些辐射模态能独立的辐射声功率,因此可实现对某一阶辐射模态进行单独控制而不影响其它各阶;并且时域辐射模态的一个重要特点是振动结构辐射的声功率主要由第一阶辐射模态的声功率所决定,在此基础上运用状态空间法进行平板结构辐射噪声的结构主动控制研究,并通过数值计算对控制效果进行了验证。  相似文献   

16.
用醇还原法制备长径比约为800的银纳米线(AgNWs)并分散成网状结构,用溶液流延法使用聚偏氟乙烯(PVDF)和不同质量分数的聚氨酯(TPU)制备柔韧性PVDF/TPU复合薄膜,然后将AgNWs网固定在PVDF/TPU柔性薄膜的表面作为电容的极板制备出柔性薄膜电容式传感器。用扫描电子显微镜(SEM)、紫外-可见光谱和X射线衍射(XRD)等手段表征了AgNWs的结构,使用电子强力拉伸仪、方块电阻仪、三电极系统和LCR数字电桥检测了柔性薄膜电容式传感器的性能。结果表明:网状结构的AgNWs电容单侧极板上的方阻为15.635 mΩ/sq;TPU与PVDF质量比为2∶8的薄膜其断裂伸长率为91.2%,韧性最好,其比电容为375 μF/g;随着传感器弯曲角度的增大其输出电容值随之增大,输出电容值与弯曲角度在一定范围内呈线性关系,弯曲角度为180°时输出最大电容为436 μF。  相似文献   

17.
朱利锋  姜哲 《噪声与振动控制》2007,27(6):127-130,133
介绍了一种设计体积速度传感器的新方法。设计策略为将PVDF压电薄膜黏结到结构表面上,两维振动结构的表面振速用Legendre多项式展开,利用两维分布式传感器压电方程,设计PVDF薄膜的形状,使传感器的输出电荷量正比于两维结构的体积速度。这样设计得到的传感器,其输出信号的实时性得到了保证,并且适用于任意边界条件,能测量振动结构的局部体积速度,拓宽了其应用范围。此外,还以简支板及其局部区域为例,通过数值计算,验证了设计方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号