首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cu粉及纳米Cu粉填充聚甲醛的摩擦学性能研究   总被引:19,自引:0,他引:19  
利用RFT-Ⅲ往复摩擦磨损试验机测试了Cu粉(200目)及纳米Cu粉填充聚甲醛所形成复合材料的摩擦磨损性能,并利用电镜、XPS和AES研究了其磨损机理。研究发现,填加一定量Cu粉(200目)及纳米Cu粉均可降低聚甲醛的磨损,但填加纳米Cu粉效果更好,,XPS分析钢对偶面发现,Cu粉(200目)在摩擦过程中生成Cu2O,而纳米Cu粉在摩擦过程中生成Cu(-CH2-O)。  相似文献   

2.
PPESK树脂基复合材料的摩擦磨损性能   总被引:10,自引:0,他引:10  
以含二氮杂萘酮结构的聚醚砚酮(PPESK)树脂为基体,填加固体润滑剂和短炭纤维(CF)制备了新型耐热脂基复合材料,研究了摩擦条件下(如载荷,行程等)和CF含量对复合材料的摩擦磨损性能的影响,分析了PPESK树脂及复合材料的磨损机理,结果表明,短CF和固体润滑剂的加入可有效改善PPESK的摩擦磨损性能,当CF含量为10%时,复合材料的摩擦系数与聚西四氟乙烯(PTFE)相当,但比磨损率降低2个数量级,与纯树脂相比,磨擦系数减小为原来的二分之一,而复合材料的磨损特性主要表现为粘着磨损,PPESK树脂基复合材料批基体,聚四氟乙烯(PTFE)具有更好的耐磨性和自润滑性。  相似文献   

3.
聚甲醛/聚四氟乙烯共混物的摩擦学性能研究   总被引:5,自引:0,他引:5  
采用冷压-热烧结工艺研制了一系列不同含量PTFE的POM/PTFE共混物,在往复摩擦磨损试验机上评价了共混物的摩擦磨损性能,并利用SEM、XPS和AES对其磨损机理进行了研究。结果表明,在共混物中PTFE的成分增加,不仅可以降低POM/PTFE共混物的摩擦系数,还可以增强POM的耐磨性,主要原因是共混物中POM和PTFE皆向对偶转移,形成了富集PTFE的转移膜。同时发现填加10%~20%PTTE的共混物具有较好的摩擦磨损性能。  相似文献   

4.
利用球一盘摩擦磨损试验机研究了办界润油条件下45^#钢渗氮表面刷镀Ni-Cu-P镀层的摩擦学性能,结果表明,在硬度较高且具热硬性的渗氮层上刷镀较软的Ni-Cu-P镀层,可较45^#钢直接刷镀Ni-Cu-P镀层及未刷镀的渗氮层,摩擦学性能全面显著提高,还利用扫;描电子显微镜和铁谱仪对磨损表面的成分、形貌和磨屑形态进行了分析。  相似文献   

5.
利用球-盘摩擦磨损试验机研究了边界润滑条件下45#钢渗氮表面刷镀Ni-Cu-P镀层的摩擦学性能.结果表明,在硬度较高且具热硬性的渗氮层上刷镀较软的Ni-Cu-P镀层,可较45#钢直接刷镀Ni-Cu-P镀层及未刷镀的渗氮层,摩擦学性能全面显著提高.还利用扫描电子显微镜和铁谱仪对磨损表面的成分、形貌和磨屑形态进行了分析.  相似文献   

6.
金属—PTC陶瓷复合材料制备工艺及机理的研究   总被引:8,自引:0,他引:8  
金属-PTC陶瓷复合材料是电子功能型的陶瓷基复合材料。本文介绍了Fe、Co、Ni-PTC陶瓷复合材料的制备方法,测定了材料的阻温特性,讨论了样品的NTC现象及阻温特性机理。  相似文献   

7.
金属-PTC陶瓷复合材料制备工艺及机理的研究   总被引:3,自引:0,他引:3  
金属-PTC陶瓷复合材料是电子功能型的陶瓷基复合材料[1].本文介绍了Fe、Co、Ni-PTC陶瓷复合材料的制备方法,测定了材料的阻温特性,讨论了样品的NTC现象及阻温特性机理.  相似文献   

8.
本文对Al2O3基陶瓷复合材料Al2O3-ZrO2-SiCw进行了干摩擦磨损试验,并运用了SEM,TEM和XRD等手段对其显微结构、力学性能及它们与GCr15钢对摩时的摩擦磨损行为进行了系统分析,在此基础上深入探讨了SiC面增韧补强作用对复俣材料的摩擦磨损性能的影响。  相似文献   

9.
本文对Al2O3基陶瓷复合材料Al2O3-ZrO2-SiCw进行了干摩擦磨损试验,并运用了SEM,TEM和XRD等手段对其显微结构、力学性能及它们与GCr15钢对摩时的摩擦磨损行为进行了系统分析,在此基础上深入探讨了SiC晶须(SiCw)增韧补强作用对复合材料的摩擦磨损性能的影响。  相似文献   

10.
雷晓蓉  黎永钧 《材料工程》1997,(11):12-15,19
对化学镀Ni-P-PTFE复合镀层工艺进行了较全面的研究。详细测定和评述了表面活性剂浓度,PTFE浓度与镀层中PTFE粒子含量及镀速的关系,以及基础镀液性质和操作条件对复合镀的影响。提出了一种具有实用价值的化学镀Ni-P-PTFE复合镀层工艺技术。镀液稳定,镀层质量优良,镀层中PTFE含量达25 ̄30vol%。  相似文献   

11.
利用MHK-500 型环-块磨损试验机, 对MoS2、CuS、PbS 及石墨(添加量均为30 vo l% )填充的聚四氟乙烯(PTFE) 复合材料在干摩擦条件下与GCr15 轴承钢对摩时的摩擦磨损性能进行了较为系统的研究, 并利用扫描电子显微镜(SEM ) 和光学显微镜对PTFE 复合材料的磨屑和摩擦磨损表面进行了观察。结果表明, 添加石墨降低了PTFE 的摩擦系数, 而添加MoS2、CuS 及PbS则增大了PTFE 的摩擦系数; 同时, 添加MoS2、CuS、PbS 及石墨均可将PTFE 的磨损量降低2 个数量级, 其中以PbS 的减磨效果为最好, 而MoS2 的减磨效果则最差。   相似文献   

12.
利用往复式摩擦磨损试验机,对聚四氟乙烯(PTFE)及石墨和MoS2填充的PTFE复合材料的摩擦磨损性能进行了测定,并利用光学显微镜对PTFE复合材料的摩擦磨损表面进行了观察。结果表明,一方面,石墨和MoS2起到了润滑作用,另一方面,石墨和MoS2阻止了PTFE带状大面积破坏,因而使得PTFE的摩擦系数降低,耐磨性提高。  相似文献   

13.
陶瓷颗粒填充PTFE复合材料的摩擦磨损性能研究   总被引:23,自引:0,他引:23  
利用MHK-500型坏-块磨损试验机,对陶瓷颗粒SiC,Si3N4,BN和B2O3填充的聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对PTEF复合材料的摩察表现进行了观察,结果表明,添加B2O3降低了PTEF的摩擦系数,而添加SiC,Si3N4及BN则增大了PTFE的摩擦系数,但是,SiC,Si3N4,BN和B2O3均可将PTFE的磨损量降低1-2个数量级,其中以Si3N4的减磨效果最好,B2O3的减磨效果最差。  相似文献   

14.
利用MM-200型环-块摩擦磨损试验机研究了纳米陶瓷颗粒SiC、Si3N4、AlN和TiN对聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对磨时的摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了磨损机理。结果表明:添加纳米TiN减少了PTFE的摩擦系数,而添加纳米SiC、Si3N4增大了PTFE的摩擦系数。与纯PTFE相比,PTFE复合材料的耐磨性能显著提高,其中以纳米AlN的减磨效果最好,纳米Si3N4的减磨效果最差。纯PTFE的磨损机制主要表现为粘着磨损和疲劳磨损,而纳米粒子填充PTFE基复合材料的磨损机制主要表现为不同程度的粘着磨损、犁沟效应和塑性变形特征。  相似文献   

15.
用机械共混、冷压成型和空气中烧结的方法制备了不同质量分数的聚丙烯腈填充聚四氟乙烯制品。用MM-200摩擦磨损试验机测试不同样品在干摩擦下的摩擦学行为;用扫描电子显微镜和光学显微镜对几种样品的磨损面、磨屑和转移膜进行观察和分析。结果表明,聚丙烯腈的加入,不但使聚四氟乙烯的磨损量大幅降低,而且还使其摩擦系数有所降低。通过扫描电子显微镜观察发现填充聚丙烯腈的聚四氟乙烯样品的对磨面有完整而且不易脱落的转移膜,这是其具有良好耐磨性的主要原因。  相似文献   

16.
超高分子量聚乙烯/金属复合材料的摩擦磨损性能   总被引:3,自引:0,他引:3  
用MM-200型摩擦磨损试验机研究了Ag、Cu、Co、Cr、Fe、Mo、W、Ni、Zn、Pb、Sn、Al等金属粉末填充超高分子量聚乙烯(UHMWPE)复合材料的摩擦磨损性能,利用扫描电子显微镜观察了复合材料磨损表面形貌.结果表明:在低速条件下,金属填料可降低UHMWPE复合材料的摩擦系数;在高速条件下,金属填料对UHMWPE复合材料的摩擦系数影响不尽相同.Ag、Cu、Co、Cr、Fe、Mo、W、Ni、Zn、Pb等金属填料可使UHMWPE的耐磨性显著提高, 而Sn、Al导致UHMWPE的磨损率增大;Ag的减摩抗磨效果最佳.  相似文献   

17.
为解决核电水循环系统中鼓型旋转滤网驱动装置的耐腐蚀问题,本文研究了碳纤维和聚四氟乙烯微粉改性的聚醚醚酮复合材料在干摩擦、水润滑和油润滑条件下的摩擦磨损性能.通过机械共混、高温模压的方法,制备了不同质量分数的聚四氟乙烯(PTFE)微粉/碳纤维(CF)/二硫化钼(MoS_2)/聚醚醚酮(PEEK)复合材料.采用拉伸试验机和塑料洛氏硬度计测试其力学性能,采用摩擦磨损试验机测试了复合材料在干摩擦、水润滑和油润滑条件下的摩擦磨损性能,采用扫描电子显微镜对其摩擦表面形貌进行分析.结果表明:复合材料在水润滑和油润滑时摩擦系数及磨痕宽度均较小,但水润滑时摩擦系数波动幅度较大且磨痕宽度略高;复合材料在干摩擦条件下的磨损机制以磨粒磨损为主,伴有疲劳磨损,油润滑时摩擦面可形成连续的润滑膜而保持光滑,水润滑时水流冲刷破坏了摩擦面上固体润滑膜的稳定性;CF质量分数增加时,复合材料的洛氏硬度和压缩强度递增,压缩强度达到164 MPa,PTFE微粉质量分数增加时,复合材料的洛氏硬度和压缩强度递减;CF质量分数增加时,复合材料的干摩擦系数及磨痕宽度下降,PTFE微粉质量分数增加时,复合材料的干摩擦系数下降,达到0.17.  相似文献   

18.
纤维及晶须增强PTFE复合材料的摩擦磨损性能研究   总被引:7,自引:0,他引:7  
利用MHK-500型环-块磨损试验机,对炭纤维,玻璃纤维及钛酸钾(K2Ti6O13)晶须增强聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对磨时的摩擦学性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对其磨屑和摩擦表面进行了观察。结果表明,炭纤维,玻璃纤维及K2Ti6O13晶须虽增大了PTFE的摩擦系数,但均可将PTFE的磨损量降低2个数量级,其中玻璃纤维的减磨效果最好,K2TiO13晶须的减磨效果最差,由于K2TiO13晶须的承载能力较差,致使K2Ti6O13晶须增强PTFE复合材料的磨损表面发生了明显的挤压变形,因而该复合材料具有较高的摩擦和磨损。  相似文献   

19.
PTFE复合材料的摩擦学性能及力学性能   总被引:8,自引:0,他引:8  
利用MM-200型磨损试验机,对不同填料填充PTFE复合材料的摩擦磨损性能进行了研究,并探讨了淬火处理对PTFE复合材料摩擦学性能及力学性能的影响.研究发现,几乎所有填料均可大大降低PTFE复合材料的磨损,但其对PTFE复合材料性能的影响差别较大.聚苯脂填充PTFE复合材料虽然具有良好的摩擦磨损性能,但是其拉伸强度较小.PI增大了PTFE复合材料的摩擦系数,随着PI含量的增加,PTFE复合材料的拉伸强度增大,而其伸长率则减小.CdO填充PTFE复合材料虽具有良好的摩擦性能,但其伸长率较大.淬火处理使PTFE复合材料的结晶度下降,从而导致PTFE复合材料的硬度减小、耐磨性变差.  相似文献   

20.
稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了不同玻璃纤维表面处理对PTFE复合材料在干摩擦条件下滑动磨损性能的影响,并借助扫描电子显微镜(SEM)分析了磨损机理。结果表明:在干摩擦条件下,经表面处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度比未经处理玻璃纤维填充的PTFE复合材料的低,且减磨性能优于未经处理的;而稀土处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度最低,减磨性能最好;未经处理玻璃纤维填充的PTFE复合材料和偶联剂处理玻璃纤维填充的PTFE复合材料都发生了剧烈的粘着转移;偶联剂与稀土处理玻璃纤维填充的PTFE复合材料的磨损机理主要是明显的磨粒磨损;稀土处理玻璃纤维填充PTFE复合材料的磨损形式主要是粘着转移和轻微的磨粒磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号