首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为研究某车型风窗噪声,根据格子波尔兹曼(Lattice Boltzmann,LBM)方法获得高速行驶工况下车身表面各监测点处的1/3 倍频程声压级及平均输入激励。采用混合有限元-统计能量分析(Finite Element-Statistical EnergyAnalysis,FE-SEA)方法对该车型车内噪声进行输入激励下的数值模拟,得到驾驶员耳旁声压级结果,并与实车道路试验比较,验证了该方法的可靠性。仿真结果表明,在20 Hz~125 Hz范围内,混合FE-SEA方法精度高于统计能量分析(Statistical Energy Analysis,SEA)方法;在125 Hz~400 Hz中频范围内,根据混合FE-SEA方法所得结果与道路试验结果更为吻合,与试验结果的误差最大值不超过3 dB;在400 Hz~1 000 Hz范围内,SEA方法的精度逐渐提升,其计算结果与试验值吻合度升高。据此进行的车身部件贡献量分析表明左前侧窗在整个频段内都对驾驶员耳旁噪声有影响, 左后侧窗对其贡献量最小。  相似文献   

2.
为研究隧道内地铁列车车内噪声特性,建立了隧道-车体有限元-边界元声学分析模型。基于地铁B型车车轨耦合模型和现场试验获取车体二系悬挂力激励和轮轨噪声激励,将激励施加到车体计算分析车内噪声,以广州轨道交通7号线列车噪声试验数据对仿真分析结果进行验证,并研究了结构声和空气声对车内噪声的影响规律。分析结果表明:车内各标准点声压级图变化趋势基本一致,峰值中心频率集中在630 Hz处,主要频段为200~1 600 Hz,车体转向架上方A声级比车体中心高约1.02~2.35 dB(A);结构声对车内噪声的主要影响频段在20~200 Hz,空气声对车内噪声的主要影响频段在200~5 000 Hz,其中500~5 000 Hz频段最为显著;60 km/h车速下,结构声荷载作用下车厢中心处A声级比空气声荷载作用下相同位置高约21 dB(A)。该研究成果可为降低列车车内噪声,改善车内声学环境提供理论依据。  相似文献   

3.
对我国某100 %低地板车辆在60 km/h速度下进行振动噪声试验,获得了低地板车动车、拖车,车内及转向架噪声特性。结果表明,车内噪声主要能量集中在400 Hz~1250 Hz,其中400 Hz频谱能量最大。动车比拖车车内噪声高3 dB,这是由于转向架动力源激励400 Hz中心频段结构传声和空气传声所致。控制电机振动,能从源头上有效控制车内400 Hz中心频率结构传声。此外,也需要从路径上控制电机激励结构传声,即控制横向减振器和二系空簧的结构传声。相关分析结果可为低地板车振动噪声控制和低噪声设计提供参考。  相似文献   

4.
为研究不同车站敷设方式对站台噪声特性的影响,选取同一线路相同站台型式的地下站及高架站展开现场噪声测试,根据列车进、出站时站台噪声水平、站台环境噪声水平及站台背景噪声水平分析车站敷设方式对站台噪声的影响,并根据噪声频谱特性分析两个站台噪声特性的差异。结果表明,两个站台在列车进(出)站时站台进(出)站端等效连续A声级LAeq存在大于现行标准限值80 dB(A)情况,站台中部噪声则始终低于标准限值。列车进、出站引起的地下站台噪声水平略高于高架站站台,其中列车进、出站时LAeq大约为0.3 dB(A)至2.1 dB(A),环境噪声水平LAeq,1h大约为0.8 dB(A)至1.1 dB(A),但无车无广播时高架站站台背景噪声略大于地下站台,大约为1.9 dB(A)。从列车进、出站站台时噪声频谱特性来看,200 Hz以下,两站台噪声峰值频率存在显著差异,高架站台出现在25 Hz至50 Hz,地下站台出现在50 Hz至100 Hz,主要由站台结构振动引起;200 Hz以上,两类站台噪声频谱分布规律基本一致,高架站声压级略小于地下站台,平均小2.0 dB(A)至3.8 d B(A)。建议根据不同敷设方式的车站的结构特性及站台空间形式采取噪声控制措施。  相似文献   

5.
高速列车引起的环境噪声及声屏障测试分析   总被引:1,自引:0,他引:1  
对武广客运专线上高速运行列车引起的环境噪声及声屏障降噪效果进行了实测,测得大量噪声数据.通过分析得到以下结论:高速列车的机车辐射噪声随列车速度的增大而增大;通过路基段时的辐射噪声为82.8~91.8 dB(A),通过桥梁段时为79.3~89.6 dB(A),随着桥梁和路基高度的逐渐增大,辐射噪声略有减小的趋势;噪声频率主要集中在低频段(f=40~80 Hz)和中频段(f=500~8 000 Hz),与桥梁区段相比,路基区段随频率的增加声能量衰减较为平缓.近期路基段铁路边界噪声值在60~65 dB(A),桥梁段为55~60dB(A);中期(2018年)边界噪声的预测噪声值较近期值有明显增大,最大值接近规范限值.路基声屏障降噪效果为6~8 dB(A),桥梁声屏障降噪效果为6~7 dB(A);声屏障越高降噪效果越明显,3.15 m高声屏障降噪效果较2.65 m高声屏障提升2 dB(A)左右.  相似文献   

6.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。  相似文献   

7.
为降低某型重型卡车怠速噪声,建立驾驶室声-振耦合有限元模型,测试驾驶室四个悬置点被动侧加速度数据,以此作为仿真激励载荷计算驾驶室司机耳旁声压,仿真与试验结果具有较高的一致性。针对怠速工况32 Hz、64 Hz和96 Hz峰值频率,计算各频率的模态参与因子,对模态参与因子较高的模态阶次进行叠加,获取各峰值频率对应的模态应变能分布,作为怠速噪声的控制区域。对32 Hz峰值频率,采用局部结构加强的方式进行降噪处理,单频噪声衰减量5.2 dB;对64 Hz和96 Hz的峰值频率,采用在模态应变能集中区域布置阻尼材料的方式进行降噪处理,单频噪声衰减量分别为2.2 dB和3.5 dB。通过试验测试,怠速工况驾驶员耳旁声压级降低3.2 dB,表明降噪效果良好。  相似文献   

8.
为解决小型电动汽车车内路面激励噪声在30 Hz与36 Hz附近声压级过大的问题,以某小型电动汽车为研究对象,以实验获取的数据为基础,利用传递路径分析(TPA)模型验证实验结果的准确性,用底盘车身接附点的载荷激励已建立的车身内饰与声腔模型,进行强迫响应分析,将仿真结果与实验结果对比,验证模型的有效性。通过计算该模型在载荷激励下的工作变形,分析引起车内噪声的车身结构弱点,主要通过增加限位零件或固定零件来进行车身结构的优化。实验工况下的结果表明:优化后车内噪声在30 Hz与36 Hz附近噪声分别降低了9.7 dB与5.3 dB,效果十分理想,成功解决路面激励导致的NVH问题。  相似文献   

9.
中低速磁悬浮列车的车内噪声对乘客的舒适性有很大影响,而关于中低速磁悬浮车内噪声特性仿真分析较少,有必要开展中低速磁悬浮列车车内噪声预测与分析。首先基于统计能量分析(SEA)对中低速磁悬浮列车进行车内噪声建模;然后,对仿真结果进行功率流分析,得到车内最大噪声出现的位置与显著频段;最后分别针对声源激励和车体隔声进行车内噪声灵敏度分析。结果表明:中低速磁悬浮列车车内最大噪声出现在客室中部和250 Hz~800 Hz频段内,这与车下声源分布有密切关系。地板隔声和受电靴-供电轨系统空气声源激励变化对车内噪声影响最为显著。通过统计能量分析和灵敏度分析对中低速磁悬浮车内噪声进行预测和分析,为我国中低速磁悬浮列车的低噪声设计提供有益参考。  相似文献   

10.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。  相似文献   

11.
公路隧道噪声降噪案例研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈兴  梁志坚  阙秀明 《声学技术》2008,27(2):244-246
隧道型公共设施的声环境,可以使用大量具有高吸声系数的吸声构造,铺设于隧道拱壁及轨道铺面,以降低混响时间及噪声。文中以在湖南省常张高速公路关口哑隧道吸声安装工程为例,在铺设吸声构造后,其混响时间在装吸声构造后在各1/3倍频带约减少64%~84%,预估降噪量则为4.7~8.5dB之间,在200Hz~800Hz之间,降噪量则有7.1dB~8.5dB之间,降噪效果显著。如以实际公路噪声特性预估,降噪量约有6.3dB(A),SIL(speech interference level)则有6.6dB改善效果。  相似文献   

12.
我国现行的结构传播固定设备室内噪声排放限值不尽合理。通过将白噪声滤波获得31.5~500 Hz各倍频程带宽样本,调整其声压级至标准限值后合成原始声样本,并适当调整各倍频程频带声压级,合成新的声样本,采用成对比较法,对比研究各声样本的主观烦恼。结果表明,在A声级或响度级相同情况下,降低31.5 Hz与63 Hz倍频程频带声压级,并提高125 Hz、250 Hz及500 Hz倍频程频带声压级,声样本主观烦恼均小于原始声样本;在各倍频程中,31.5 Hz倍频程频带声压级与声样本主观烦恼度最为相关,且呈显著正相关(p < 0.01),Pearson相关系数为0.925~0.951。  相似文献   

13.
为探究某种阻尼材料对高速列车铝型材地板的减振降噪效果,以波纹状铝型材为基板,先后对其喷涂厚度为2 mm和4 mm的阻尼层,并在隔声室中进行空气声隔声及结构振动声辐射的测试及比对分析。结果显示,随阻尼层厚度的增加,铝型材的空气声隔声效果增加,尤其在500 Hz之后的中高频段;其中,2 mm阻尼层能在铝型材裸板的基础上使计权隔声量提高4.5 dB,阻尼层厚度增至4 mm,计权隔声量再提高2.4 dB。在100 Hz ~250 Hz,2 mm阻尼层对降低铝型材的振动声辐射水平起反作用,而4 mm阻尼层能够起到一定作用;在315 Hz ~400 Hz,阻尼层厚度对其振动声辐射几乎没有影响;500 Hz以上,随阻尼层厚度的增加,铝型材振动声辐射水平大大降低,其中,500 Hz、1 250 Hz和3 150 Hz 三个频段的降低量最为显著。  相似文献   

14.
王伟辉  温翊钧 《声学技术》2014,33(6):531-538
在居家生活中,抽油烟机之噪声甚为扰人而影响生活质量。就现有某型常用抽油烟机,利用声级计量测其噪声量与频谱,并利用人工耳及dB sonic软件分别量测分析其声音质量参数值,所得结果在人耳位置之声级为68.1d B(A),音质粗糙度为33.5 asper,响度为27.8 sone,波动强度为6.8 vacil,尖锐度为1.64 acum,并按王氏之烦躁度模式评估出烦躁度指针为13.19,其中以响度及尖锐度对音质评估之烦躁度指标影响最大。经机壳与机座之振动量测频谱与噪声频谱比较,鉴定出噪声主要峰值频率为500 Hz与100 Hz两个成分音,其中500Hz者为进气口之涡流噪声;而100 Hz者为机壳之振动辐射声。为降低排油烟机之响度及尖锐度以改善其运转时之声音质量,采用了几项对策。分别是:在进气口加装消声器,在机壳内侧贴吸声棉及包覆PU塑料膜,并黏贴阻尼材,所得效果可使噪声量降为55.2 d B(A),振动量减1-5 d B,响度降为14.7 sone,尖锐度降为1.35 acum,烦躁度指标降为8.16。  相似文献   

15.
本文主要介绍了共振式消声器的亥姆赫兹共振吸声原理,并提供了共振式消声器的设计方法和计算公式。针对高转速单螺杆压缩机排气口1 000 Hz倍频带噪声偏高的问题,设计了一款共振式消声器来降低噪声。通过试验验证,安装了共振式消声器后,压缩机排气口在1 000 Hz倍频带的噪声由原来100.2 d B降到90.3 dB,下降了9.3 dB,降噪效果明显。  相似文献   

16.
本文在小体积低频共振吸声器研究理论的基础上,研究了用附加共振器改善飞机壁板低频传声损失(隔声量)的方法。建立了计算双壁板结构隔声量的数学模型,推导了附加共振吸声器后壁板传声损失的计算公式,阐明了共振吸声器对提高壁板隔声量的物理原理。实验测量了实际(Y—7)飞机壁板的隔声量,在80Hz 和160Hz 的1/3倍频程中心频率上,壁板加共振器后,隔声量提高了4dB 和6.5dB,理论计算结果与实验结果一致性很好。  相似文献   

17.
基于统计能量分析(SEA)原理,结合压缩机排气管道系统的实际结构尺寸建立了SEA模型。采用理论及经验结果讨论了统计能量分析法三个重要参数确定,利用现场测试壳体加速度来确定输入功率。运用AutoSEA2004仿真软件预测了距离管道系统外部一定距离的声压级,并与现场测试所得数据进行了对比分析,结果表明,预测管道系统的总声压级为102.7dB(A),比实测结果低4.2dB(A),在500 Hz以上主要频段上,预测曲线与实测曲线吻合较好,为管道系统噪声治理提供了数值仿真依据。  相似文献   

18.
以某商住两用高层建筑内对居民影响较大的大型超市货梯曳引机噪声治理为例,在测量分析货梯机房及受影响住宅室内振动与噪声信号基础上,结合声源识别,提出对货梯曳引机采取隔振设计,降低结构传播至住宅室内噪声的工程措施,并对工程实施后的降噪效果进行实测。结果表明,隔振处理后,除共振区外,在5~1 000 Hz各1/3倍频程上隔振器上、下振动加速度级差为15.0~32.4 dB,隔振效率为82.2 %~97.6 %;机房内曳引机通过建筑结构传播至住宅室内的噪声,在63~2 000 Hz各倍频程上声压级降低8.9~21.4 dB,其中以250 Hz所在倍频程声压级降低量为最大,最终消除了居民相关噪声投诉。  相似文献   

19.
为了了解航船以及禁渔政策对我国近海海域低频环境噪声特性的影响,文章分析了青岛近海航道区域和非航道区域的海洋环境噪声在25~500 Hz频段实测数据的1/3倍频程功率谱密度。结果表明,在30~100 Hz频段,航道附近海域海洋环境噪声谱级比非航道海域高大约5~10 dB;非禁渔期在150~400 Hz频段的海洋环境噪声谱级比禁渔期高大约4~5.5 dB。文章获取的近海低频环境噪声谱级特性,对了解和利用我国以及世界范围内近海环境噪声低频特性具有较重要借鉴意义。  相似文献   

20.
根据统计能量法(SEA)的基本原理,给出相关参数、运动方程以及功率平衡方程的表达式。进而在等厚度的单、双层玻璃窗隔声模型中,采用SEA对其隔声性能进行分析。结果表明:在125 Hz~4 000 Hz频率范围内,单、双层玻璃窗模型的预报隔声量与实测数据的误差分别在3 dB和7 dB以内(临界频率除外),边框有吸声处理的双层玻璃窗较单层玻璃窗的平均隔声量高13 dB左右;在500 Hz~4 000 Hz范围内,空气层的厚度每增加50 mm,双层玻璃的隔声量相应提高1 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号