首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Bulk laminate structure of Ti-alloy/Ti-based metallic glass composite(MGC) was prepared by melting a preform of alternate stack-up foils in the high vacuum atmosphere. The composite demonstrates a good combination of yield strength(~1618 MPa), plasticity(~4.3%) and specific fracture strength(384 × 10~3 Nmkg~(-1)) in compression. The maintained yield strength results from the unique microstructure composed of the Ti layer, the solution layer with gradient structure and the MGC layer. Such a multilayer structure effectively inhibits the propagation of shear band, leading to the enhanced plasticity. Those extraordinary properities suggest that combining ductile lamella with brittle metallic glass(MG) by such a lay-up method can be an effective way to improve mechanical properties of MG.  相似文献   

2.
The titanium carbides are potential candidates to achieve both high hardness and refractory property. We carried out a structural search for titanium carbides at three pressures of 0 GPa, 30 GPa and 50 GPa. A phase diagram of the Ti-C system at 0 K was obtained by elucidating formation enthalpies as a function of compositions, and their mechanical and metallic properties of titanium carbides were investigated systematically. We also discussed the relation of titanium concentration to the both mechanical and metallic properties of titanium carbides. It has been found that the average valence electron density and tractility improved at higher concentrations of titanium, while the degree of covalent bonding directionality decreased. To this effect, the hardness of titanium carbide decreases as the content of titanium increases. Our results indicated that the titanium content significantly affected the metallic properties of the Ti-C system.  相似文献   

3.
Entropy generation rates considering particle migration are evaluated for a biologically produced nanofluid flow in a mini double-pipe heat exchanger. The nanofluid is used in tube side and hot water flows in annulus side. Silver nanoparticles synthesized through plant extract method from green tea leaves are utilized. Particle migration causes non-uniform concentration distribution, and non-uniformity intensifies by increase in Reynolds number and concentration. The results indicate that at high concentrations and Reynolds numbers, particle migration can have a great effect on entropy generation rates. For water inlet temperature of 308 K, the contribution of friction in nanofluid entropy generation is much more than that of heat transfer. However, as the water inlet temperature increases to 360 K, the heat transfer contribution increases such that at low Reynolds numbers, the thermal contribution exceeds the frictional one. For total heat exchanger, Bejan number is smaller than 0.2 at water inlet temperature of 308 K, while Bejan number has a large value at water inlet temperature of 360 K. Furthermore, entropy generation at the wall has an insignificant contribution, such that for Re = 1000 and φm = 1%, the total entropy generation rates for the nanofluid, wall, and water are 0.098810, 0.000133, and 0.041851 W/K, respectively.  相似文献   

4.
陈思泉  李艳辉  张伟 《材料导报》2016,30(17):127-133
Al基金属玻璃具有高强度、高韧性、良好的耐蚀性,特别是其比强度高达330kN·m/kg,作为新结构材料在航空航天领域具有潜在的应用前景。近年不仅研发出了具有大过冷液相区以及能形成块体金属玻璃的Al基合金,还通过粉体温热固化成形工艺实现了Al基金属玻璃的大块体化,推动了其在实际生产中的应用。简述了有关Al基金属玻璃合金的玻璃形成能力、过冷液体热稳定性、力学性能及其粉末烧结体的组织和性能等方面的最新研究进展,并对其发展存在的问题进行了探讨。  相似文献   

5.
Adsorbent (T3K618) has been prepared from Tunçbilek lignite by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. The N2 adsorption isotherm of malachite green on T3K618 is type I. The BET surface area of the adsorbent which was primarily contributed by micropores was determined 1000 m2/g. T3K618 was used to adsorb malachite green (MG) from an aqueous solution in a batch reactor. The effects of initial dye concentration, agitation time, initial pH and adsorption temperature have been studied. It was also found that the adsorption isotherm followed both Freundlich and Dubinin–Radushkevich models. However, the Freundlich gave a better fit to all adsorption isotherms than the Dubinin–Radushkevich. The kinetics of adsorption of MG has been tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Results show that the adsorption of MG from aqueous solution onto micropores T3K618 proceeds according to the pseudo-second-order model. The intraparticle diffusion of MG molecules within the carbon particles was identified to be the rate-limiting step. The adsorption of the MG was endothermic (ΔH° = 6.55–62.37 kJ/mol) and was accompanied by an increase in entropy (ΔS° = 74–223 J/mol K) and a decrease in mean value of Gibbs energy (ΔG° = −6.48 to −10.32 kJ/mol) in the temperature range of 20–50 °C.  相似文献   

6.
It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic (CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap joining (FLJ) directly at rotation rates of 600–2000 rpm, with the welding tool at the joint center and offsetting the tool 7 mm away from the center toward the retreating side, respectively. Tool offsetting reduced the non-uniform temperature distribution in the lap joints resulting from the high conductivity of Cu, which not only enhanced the tensile shear force from 0.89–2.25 kN to 1.71–3.54 kN, with the maximum increasing rate of 135%, but also reduced the bubble area to only 19% of the original level of 2000 rpm. It is the first time to report a high-quality Cu/CFRTP joint with a high strength and few bubbles. The large increase of the strength after tool offsetting was attributed to the increase of the joining area, the decrease of bubbles and the decrease of the CFRTP degradation. The details on the generation, quantitative distribution and expulsion of the bubbles in the FLJ joints were discussed.  相似文献   

7.
When bulk materials are made into micro‐and nanoscale fibers, there will be attractive improvement of structural and functional properties, even unusual experimental phenomena [Ref. 3 ]. The main drawback of various applications of metallic fibers is poor ability of present fabrication methods for controlling their dimensions and surface properties [Ref. 4 ]. Metallic glassy fibers (MGFs) are desired because of unique mechanical and physical properties and glass‐like thermoplastic processability of metallic glasses (MGs). Here, we report a synthetic route for production of micro‐to nanoscale MGFs (the diameter ranges from 100 µm to 70 nm) by driving bulk metallic glass rods in their supercooled liquid region via superplastic deformation. Compared with existing metallic fibers, the MGFs have precisely designed and controlled properties and size, high structural uniformity and surface smoothness, and extremely flexibility. Remarkably, the method is simple, efficient, and low cost, and the MGFs can be continuous prepared by the method. Furthermore, the MGFs circumvent brittleness of MGs by size reduction. We proposed a parameter based on the thermal and rheological properties of MG‐forming alloys to control the preparation and size of the fibers. The MGFs with superior properties might attract intensive scientific interest and open wide engineering and functional applications of glassy alloys.  相似文献   

8.
Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ? aspect ratio ? 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.  相似文献   

9.
Oxygen-free copper(Cu) was successfully joined to carbon-fiber-reinforced thermoplastic(CFRTP,polyamide 6 with 20 wt% carbon fiber addition) by friction lap joining(FLJ) at joining speeds of 200–1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 mm.It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force(TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN(15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu_2O layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased,the influence factors varied as follows: the joining area increased first and then decreased; the degradation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.  相似文献   

10.
A method is developed for hydrodynamics scale-up of gas-solid fluidized beds based on recurrence quantification analysis of nonlinear time series of pressure fluctuations. This method is an improvement of the previous method by including the entropy of pressure fluctuations to the list of scale-up parameters. Experiments were carried out at varying conditions, e. g., bed diameter (5, 9, 15, 40 and 80 cm ID), particle size (150, 300, 400 and 600 μm), bed height at aspect ratios (1, 1.5 and 2) and superficial gas velocities (ranging 0.1 to 1.7 m/s) to identify the main parameters that influence the dynamics and to develop a general interpretation of the analysis results. By investigation of the effect of operating parameters on entropy, a quantitative empirical correlation is proposed for including the entropy in the scale-up parameters. It was shown that this correlation improves the Glicksman’s method for the scale-up of fluidized beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号