首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
特种能场辅助微塑性成形技术是利用声、光、电、磁等特殊能量源对微型零件变形过程进行调控的先进制造技术。特种能场已被证明在宏观尺度下对于降低零件加工难度、提高尺寸精度、改善材料微观组织、提升构件力学性能、提高表面质量等存在促进作用。然而,在微塑性成形过程中,材料的变形特性在尺寸效应的影响下与宏观情况存在一定差异。梳理了特种能场辅助微塑性成形技术的研究进展,总结了微型零件在特种能场辅助下的成形特点。其中,着重综述了超声场辅助微成形中体积效应和表面效应的宏观表现及微观机理,展示了多种微成形工艺中超声场对微型零件成形质量的提升效果。同时,重点概述了电场辅助微成形时材料力学性能及微观组织演变规律,剖析了电致塑性效应产生的本质原因。此外,列举了激光、电磁、高压流体等其他特种场辅助微成形的原理及作用效果。最后,对特种能场辅助微成形的发展趋势进行了展望。  相似文献   

2.
微电子材料在微机电系统(MEMS)的发展中越来越受到青睐,但是其工艺加工的不足限制了实际应用的步伐。微塑性成形可以成形微电子器件,由于其尺寸微型化,在微塑性成形中存在一个不可避免的“尺度效应”问题,尺度效应表现在材料的流动行为、成形中摩擦效应和实验结果的分散性上。在介绍尺度效应的基础上对其进行了分类,给出了判断标准,并从流动应力、晶粒尺度、摩擦效应和温度效应等方面综述了尺度效应对微塑性成形的影响。由于基于连续介质的传统塑性力学理论无法解释微塑性成形过程中的尺度效应,因此引入了非均匀介质的塑性应变梯度理论并进行了探讨,最后指出了尺度效应的研究发展方向,从而促进微电子材料的开发应用。  相似文献   

3.
高强难变形金属材料微成形中普遍存在成形温度高、表面氧化严重、模具寿命低等问题,迫切需要发展提高难变形材料微成形潜力的新原理、新方法和新工艺。电流辅助微成形技术可以明显改善材料的塑性流动能力、优化微观组织、改善表面质量、提升构件综合力学性能,在突破高强难变形材料制造瓶颈方面具有巨大潜力。基于此,从电流诱发的非热电致塑性效应(电子风)、焦耳热效应和次生效应(裂纹愈合、局部电势)等方面综合评述了电致塑性效应的物理机制,分析了电流激励下材料成形性和应力降等力学性能的响应规律,并从电流对材料回复、再结晶及相变等微观组织的影响方面探讨了电致塑性效应的微观作用机理,进而讨论了近年发展的一些电流辅助微成形工艺,总结并提出了电流辅助微成形技术在理论和工艺方面面临的挑战。  相似文献   

4.
用超塑性成形工艺对外侧表面带凸耳的空心圆锥体铝合金(7A04)零件进行了成形试验,通过分析和试验确定了合理的超塑成形工艺和模具结构.该零件须分两步进行超塑成形:先成形空心圆锥体,再成形凸耳;超塑性成形工艺制造该零件比原机加工工艺简单,节省材料超过60%.  相似文献   

5.
塑性微成形技术研究进展   总被引:1,自引:0,他引:1  
随着微纳米科学和微机电系统(Micro-Electro-Mechanical Systems,MEMS)技术的快速发展,人们对微型零件的需求日益增加。塑性微成形是一种采用塑性变形,成形零件尺寸至少有两个方向在亚毫米量级的微制造方法,具有加工效率高、工艺简单以及成形零件性能优异和精度高等特点,特别适合于微型零件的低成本批量制造。介绍了塑性微成形技术的研究背景、应用领域及其优点,综述了微成形在尺度效应、新设备以及工艺方法等方面的最新研究进展,并论述了微成形技术在新材料(超细晶材料及非晶材料)方面的发展趋势。  相似文献   

6.
材料超塑性和超塑成形/扩散连接技术及应用   总被引:5,自引:0,他引:5  
大量的工程材料都具有超塑性,以材料超塑性为理论基础的超塑成形/扩散连接技术是先进制造技术的一种,在航空航天等许多工业部门得到了越来越多的应用.分析了材料超塑性现象,超塑性变形机理研究进展,超塑成形/扩散连接技术的理论基础.以及超塑成形/扩散连接复合工艺的技术优势、研究进展和应用现状,并展望了超塑成形/扩散连接技术的发展趋势.  相似文献   

7.
近十年来块体非晶合金材料的研究现状及发展趋势   总被引:2,自引:0,他引:2  
综述了现有的各种块体非晶合金(BMGs)体系及其主要性能特点、应用情况,分析了近十年来该领域的研究现状,认为当前的有关基础研究工作主要集中在新非晶合金体系的开发、不同变形方式下的变形行为及断裂机理、焊/连接工艺、复合强韧化、塑性成形及断裂过程的仿真模拟、微成形性能等几个方面;相关的应用研究,一是通过超塑性成型及各种连接技术实现常规尺寸非晶合金制件的加工;二是通过微塑性成型技术实现对微型器件的制造。最后,指出了实现非晶合金微型制件工业化、批量化生产所必须解决的几个关键问题。  相似文献   

8.
微成形技术具备高生产效率、高材料利用率和优异的成形质量,是一种极具发展前景的高精度加工技术。数值模拟技术作为一种先进的研究手段,可以在塑性加工中对材料的变形和工艺可行性等进行评估和预测,达到节约生产成本、缩短研发周期的作用。主要综述了数值模拟技术在微成形研究中的典型应用。介绍了数值模拟技术在研究材料性质和材料变形方面的应用,包括利用Voronoi方法和晶体塑性方法建立金属多晶体模型,研究了微成形过程中材料的变形机制和尺寸效应,建立了材料摩擦函数、构建了零件粗糙表面,研究了微成形过程中的摩擦行为;将晶粒大小、晶体取向与板料模型相关联,研究了微成形过程中薄板的回弹行为和成形极限。除此之外,也介绍了近年来微成形领域的许多新成形技术,如激光辅助微成形、水射流增量微成形、超声辅助微成形,以及数值模拟方法在这些新微成形技术方面的应用。最后,总结了数值模拟技术在微成形研究中所起的作用,并展望了该领域的未来发展趋势。  相似文献   

9.
微塑性成形技术的研究进展   总被引:9,自引:2,他引:7  
介绍了塑性微成形技术的发展背景及其基本特点,综述了尺寸效应及其对微塑性成形工艺的影响、微型构件微塑性成形工艺以及微成形装置的研究现状,并对其发展趋势进行了预测.  相似文献   

10.
板材屈服准则与塑性失稳模型是精准描述高性能构件成形或服役过程的基础与前提。在板材塑性成形过程中,试样几何尺寸、材料晶粒大小、自由表面粗化和织构分布等都会对材料的塑性变形行为产生不可忽略的影响,导致单一尺度下的本构模型和断裂准则不能有效预测微观尺度下的材料变形行为和各种缺陷,大大限制了合金板材在航空、航天、汽车、医疗等工业上的应用。对现有屈服准则的研究进展进行了较为全面的回顾,从Hill、Hershey-Hosford和Drucker这3个系列出发,分别进行了对比分析,并总结了目前国内外用于验证屈服准则的金属板材双向拉伸实验机发展状况。基于不同的破裂失稳机理,将失稳模型分为宏观失稳准则、韧性断裂准则和耦合材料损伤演化的韧性断裂准则,并分别进行了归纳和阐述。此外,随着微成形技术的逐步推广,也对宏观塑性成形理论在微尺度下的应用进展进行了说明,指出了宏观屈服准则和失稳模型在微尺度下的不足和缺陷。最后讨论了宏观屈服准则和失稳模型今后的发展趋势以及宏观塑性成形理论在微尺度下的应用前景。  相似文献   

11.
With reducing the grain size into nanometer scale for polycrystalline materials, the influence of nonlocal interactions in grain boundaries on the mechanical properties of the material is reinforced as well as the interface energy stemming from the surfaces of grains is increased, resulting in that the mechanical properties of the polycrystalline represent size-dependence significantly. In this work, the influence of the interface energy and grain boundaries on the elastic properties of nanocrystalline materials is investigated in the framework of continuum mechanics. An analytical expression of the elastic modulus is addressed to describe the grain size effects on the Young’s modulus of nanocrystalline materials. The numerical results illustrate that the elastic modulus of nanocrystalline materials decreases with the reduction of the grain size to nanometer scale. The grain size effects become remarkable when the grain size lowers down to several tens nanometers, and the influence of the interface energy and grain boundary must be taken into account. The contribution of the density on the mechanical properties in nanocrystalline materials is analyzed by discussing the influence of the grain boundary thickness on the elastic modulus. The comparison between the proposed theoretical results and the present measurement shows that the proposed model can predict the experiments quite well.  相似文献   

12.
Structural nanocrystalline materials: an overview   总被引:1,自引:0,他引:1  
This paper presents a brief overview of the field of structural nanocrystalline materials. These are materials in either bulk, coating, or thin film form whose function is for structural applications. The major processing methods for production of bulk nanocrystalline materials are reviewed. These methods include inert gas condensation, chemical reaction methods, electrodeposition, mechanical attrition, and severe plastic deformation. The stability of the nanocrystalline microstructure is discussed in terms of strategies for retardation of grain growth. Selected mechanical properties of nanocrystalline materials are described; specifically strength and ductility. Corrosion resistance is briefly addressed. Examples of present or potential applications for structural nanocrystalline materials are given.  相似文献   

13.
为了研究晶界形态及动态再结晶在超塑性形变中的作用,采用光学显微镜、扫描电镜、透射电镜,对硬铝LY12 的超塑性形变过程进行了观察、分析.提出金属材料的超塑性主要依靠晶界流态化区的粘性变形来实现,动态再结晶不是超塑性的一种机制.  相似文献   

14.
Diffusion is a key property determining the suitability of nanocrystalline materials for use in numerous applications, and it is crucial to the assessment of the extent to which the interfaces in nanocrystalline samples differ from conventional grain boundaries. The present article offers an overview of diffusion in nanocrystalline metals and alloys. Emphasis is placed on the interfacial characteristics that affect diffusion in nanocrystalline materials, such as structural relaxation, grain growth, porosity, and the specific type of interface. In addition, the influence of intergranular amorphous phases and intergranular melting on diffusion is addressed, and the atomistic simulation of GB structures and diffusion is briefly summarized. On the basis of the available diffusion data, the diffusion‐mediated processes of deformation and induced magnetic anisotropy are discussed.  相似文献   

15.
合金在大塑性变形过程中能够形成纳米晶过饱和固溶体,呈现出不同于传统粗晶材料的微观结构和独特性能。近年来,纳米晶过饱和固溶体的形成机制及其热稳定性已成为国内外的一个研究热点。综述了大塑性变形工艺(如机械合金化法、高压扭转法等)制备纳米晶过饱和固溶体的研究概况,着重讨论分析了大塑性变形诱导纳米晶形成和固溶度扩展的几种机制及其局限性,简要介绍了纳米晶过饱和固溶体的热稳定性及其影响因素,最后对该领域今后的研究方向做出了分析和展望。  相似文献   

16.
B. Wang  Z. M. Xiao 《Acta Mechanica》2004,173(1-4):207-222
Summary. Based on experimental observations, nanocrystalline materials are modeled as composite systems in which the amorphous interfacial phase is treated as the matrix, whereas the nano-scale single crystals are modeled as inclusions. Generally speaking, the elastic moduli of nanoscale crystals are higher than those of the amorphous matrix phase, and the deformation mechanism of nanocrystalline materials depends heavily on the size of the crystals. For conventional macro size crystal materials, such as coarse-grained polycrystalline materials, the deformation mechanism due to dislocation movement is dominant. When the crystal size is reduced to a certain critical value, plastic deformation is caused by shear banding in the amorphous matrix. In order to model such a deformation mechanism in nanocrystalline materials, constitutive equations are established based on internal variable theory. The proposed model reveals the relation between the yield strength and the grain size of the material.  相似文献   

17.
Nanocrystalline materials, which are expected to play a key role in the next generation of human civilization, are assembled with nanometre-sized “building blocks” consisting of the crystalline and large volume fractions of intercrystalline components. In order to predict the unique properties of nanocrystalline materials, which are a combination of the properties of the crystalline and intercrystalline regions, it is essential to understand precisely how the structures of crystalline and intercrystalline regions vary with decrease in crystallite size. In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique properties of nanocrystalline materials. Therefore, extensive interest has been generated in exploring the size effects on the structure of crystalline and intercrystalline region of nanocrystalline materials, and the thermal stability of nanocrystalline materials against significant grain growth. The present article is aimed at understanding the structure and stability of nanocrystalline materials.  相似文献   

18.
Superplastic forming is a manufacturing process during which a sheet is blow formed into a die to produce lightweight and strong components. In this paper, the microstructural mechanism of grain growth during superplastic deformation is studied. A new model, which considers grain growth, is proposed and applied to conventional superplastic materials. The relationships among the strain, strain rate, test temperature, initial grain size, and grain growth in superplastic materials are discussed. According to the proposed model, theoretical predictions for superplastic forming processes are presented, and comparison with experimental data is given. The new constitutive equation of superplasticity is introduced into a finite element method program to study superplastic blow forming. The effects of the geometric shape parameters of the die on the superplastic blow forming process are investigated, and the inhomogeneity in the thickness distribution of the specimen is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号