首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matter in its liquid state is convenient for processing and controlling chemical reactions, owing to its fluidity. Recently much evidence has been accumulated for the existence of a liquid-liquid transition (LLT) in single-component liquids. Here, we report that we can control, by the LLT of a molecular liquid, triphenyl phosphite (TPP), the fluidity and miscibility of its mixture with another molecular liquid. For a mixture of TPP with toluene or aniline, we find that both liquid I and II mix well and liquid II remains in a 'liquid' state, in contrast to pure TPP, where liquid II is a non-ergodic amorphous state. This is the first example of a 'true' LLT in a molecular liquid. Furthermore, we find demixing induced by the LLT for a mixture of TPP with diethyl ether or ethanol. These findings will open a new phase of research towards various applications of the LLT.  相似文献   

2.
Polyamorphs are often observed in amorphous matters, and a representative example is the reentrant glass transition in colloid systems. For metallic amorphous alloys, however, the cases reported so far are limited to metallic glasses (MGs) that undergo electronic transitions under gigapascal applied pressure, or the presence of two liquids at the same composition. Here we report the first observation of a reentrant glass transition in MGs. This unusual reentrant glass transition transforms an MG from its as-quenched state (Glass I) to an ultrastable state (Glass II), mediated by the supercooled liquid of Glass I. Specifically, upon heating to above its glass transition temperature under ambient pressure, Glass I first transitions into its supercooled liquid, which then transforms into a new Glass II, accompanied by an exothermic peak in calorimetric scan, together with a precipitous drop in volume, electrical resistance and specific heat, as well as clear evidence of local structural ordering on the short-to-medium-range scale revealed via in-situ synchrotron X-ray scattering. Atomistic simulations indicate enhanced ordering of locally favored motifs to establish correlations in the medium range that resemble those in equilibrium crystalline compounds. The resulting lower-energy Glass II has its own glass transition temperature higher than that of Glass I by as much as 50 degrees. This route thus delivers a thermodynamically and kinetically ultrastable MG that can be easily retained to ambient conditions.  相似文献   

3.
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.  相似文献   

4.
Ji H  Wei J  Natelson D 《Nano letters》2012,12(6):2988-2992
Vanadium dioxide (VO(2)) is a strongly correlated transition metal oxide with a dramatic metal-insulator transition at 67 °C. Researchers have long been interested in manipulating this transition via the field effect. Here we report attempts to modulate this transition in single-crystal VO(2) nanowires via electrochemical gating using ionic liquids. Stray water contamination in the ionic liquid leads to large, slow, hysteretic conductance responses to changes in the gate potential, allowing tuning of the activation energy of the conductance in the insulating state. We suggest that these changes are the result of electrochemical doping via hydrogen. In the absence of this chemical effect, gate response is minimal, suggesting that significant field-effect modulation of the metal-insulator transition is not possible, at least along the crystallographic directions relevant in these nanowires.  相似文献   

5.
Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other 'tetrahedral network' liquids that show density maxima. Proper study of the 'liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.  相似文献   

6.
Effects of water and a variety of organic liquids on crack-growth rates in soda-lime-silica glass was investigated. When water is present in organic liquids, it is usually the principal agent that promotes subcritical crack growth in glass. In region I, subcritical crack growth is controlled primarily by the chemical potential of the water in the liquid; whereas in region II, crack growth is controlled by the concentration of water and the viscosity of the solution formed by the water and the organic liquid. In region III, where water does not affect crack growth, the slope of the crack-growth curves can be correlated with the dielectric constant of the liquid. It is suggested that these latter results can be explained by electrostatic interactions between the environment and charges that form during the rupture of Si-O bonds.  相似文献   

7.
Ground-based liquid–liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid–liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.  相似文献   

8.
Subphthalocyaninatoboron(III) was applied for the first time as a novel marker-tag of testosterone (Subpc-test) for the binding analysis with human serum albumin (HSA) at a liquid/liquid interface. The binding interaction of Subpc-test with HSA at the n-hexane/water interface was studied by UV-visible absorption and circular dichroism (CD) spectroscopy combined with a centrifugal liquid membrane cell at different pHs of aqueous solutions. Complementary studies by a high-speed stirring experiment and an interfacial tension measurement were also performed to characterize the interfacial adsorptivity of Subpc-test and HSA molecules, respectively. The n-hexane solution of Subpc-test showed no optical chirality, but the contact with the aqueous solution of HSA induced its optical chirality, clearly suggesting the formation of Subpc-test/HSA complexes at the n-hexane/water interface. Furthermore, pH profiles of CD signals showed that the interaction between Subpc-test and HSA was very sensitive to the neutral-to-base transition (N-B transition). Interfacial formation of the Subpc-test/HSA complex was studied in the presence of the site-selective ligand, furosemide (site I) or cefaclor (site II). The experimental results suggested that Subpc-test is bound to site I of the HSA molecule at the n-hexane/water interface. This technique using subphthalocyanine as a tag molecule and the liquid/liquid interface as a two-dimensional nanoreaction field will be useful for the evaluation of the interaction between drugs or hormones and proteins.  相似文献   

9.
10.
Choline lactate, an ionic liquid composed of bioderived materials, offers an opportunity to develop biodegradable electrochemical devices. Although ionic liquids possess large potential windows, high conductivity, and are nonvolatile, they do not exhibit electrochemical characteristics such as intercalation pseudocapacitance, redox pseudocapacitance, and electrochromism. Herein, bioderived ionic liquids are developed, including metal ions, Li, Na, and Ca, to yield ionic liquid with electrochemical behavior. Differential scanning calorimetry results reveal that the ionic liquids remained in liquid state from 230.42 to 373.15 K. The conductivities of the ionic liquids with metal are lower than those of the pristine ionic liquid, whereas the capacitance change negligibly. A protocol of the Organization for Economic Co-operation and Development 301C modified MITI test (I) confirms that the pristine ionic liquid and ionic liquids with metal are readily biodegradable. Additionally, an ionic gel comprising the ionic liquid and poly(vinyl alcohol) is biodegradable. An electrochromic device is developed using an ionic liquid containing Li ions. The device successfully changes color at −2.5 V, demonstrating the intercalation of Li ions into the WO3 crystal. The results suggest that the electrochemically active ionic liquids have potential for the development of environmentally benign devices, sustainable electronics, and bioresorbable/implantable devices.  相似文献   

11.
An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated.  相似文献   

12.
Transport measurements on the cuprates suggest the presence of a quantum critical point (QCP) hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle quantities, such as the spectral function, the quasi-particle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour hopping t', we find a classical critical point at temperature T(c). This classical critical point is found to be associated with a phase-separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudo-gap state, respectively. Since the critical temperature T(c) extrapolates to zero as t' vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the supercritical region in the liquid-gas transition.  相似文献   

13.
Preventing water droplets from transitioning to ice is advantageous for numerous applications. It is demonstrated that the use of certain phase‐change materials, which are in liquid state under ambient conditions and have melting point higher than the freezing point of water, referred herein as phase‐switching liquids (PSLs), can impede condensation–frosting lasting up to 300 and 15 times longer in bulk and surface infused state, respectively, compared to conventional surfaces under identical environmental conditions. The freezing delay is primarily a consequence of the release of trapped latent heat due to condensation, but is also affected by the solidified PSL surface morphology and its miscibility in water. Regardless of surface chemistry, PSL‐infused textured surfaces exhibit low droplet adhesion when operated below the corresponding melting point of the solidified PSLs, engendering ice and frost repellency even on hydrophilic substrates. Additionally, solidified PSL surfaces display varying degrees of optical transparency, can repel a variety of liquids, and self‐heal upon physical damage.  相似文献   

14.
The kinetic spinodal (KS) in supercooled liquids, similar to the KS in superheated and stretched liquids, has been introduced as a locus where the mean time of formation of a critical nucleus becomes shorter than a relaxation time to local equilibrium. If the surface tension of the solid–liquid interface is known, the kinetic spinodal is completely determined by the equation of state of the supercooled liquid. The theory was tested against experimental data for the surface tension and the homogeneous nucleation limit for supercooled water. Reasonably good agreement between theoretical predictions and experimental data was observed. A prediction of the high-temperature limit for glass transitions is also discussed.  相似文献   

15.
Using a single-beam, compact interferometer, we measure the refractive index of liquids in the near IR. This highly compact device relies on a silica capillary with a 50?μm inner diameter: it uses a minimal volume of test liquid, isolates the liquid from the humid atmosphere, has broadband operation, and is inherently mechanically stable. These characteristics, in combination with straightforward data acquisition, make it particularly well-suited for measuring the optical properties in the near IR of a wide range of liquids. Using this refractometer, we measure the refractive index of high-index liquids that are expected to be hydroscopic. The accuracy of the refractometer (±0.1%) is demonstrated through measuring the indices of air and pure water. We show that the hydroscopic behavior of the probed liquids has little influence on their optical properties in the near IR.  相似文献   

16.
Two types of soy polyols have been prepared, one with secondary OH groups resulted from epoxidation of soybean oil followed by methanolysis (polyol type I) and the other with primary OH groups created from hydroformylation of soybean oil followed by hydrogenation (polyol type II). Cast polyurethane resins were prepared from these two types of polyols with Isonate 2143L, and rigid polyurethane foams were prepared from a blend of soy polyol and glycerol with PAPI 2901. Polyol II is much more reactive than polyol I towards polyurethane formation. This is evidenced from studies on polyurethane gel-times, glass transitions and rigid foam mechanical strengths. The reaction for the polyurethane formation is more complete for polyol II resulted from its higher reactivity than polyol I, although a less rigid polyurethane material is resulted from polyol II than from polyol I. Polyol type II also requires lower amounts of catalysts for rigid foam formulation. Both rigid foam systems produce foams having the required mechanical strength. The polyol II foam system behaves much like conventional rigid foam systems where the strength are proportional to system OH content, while the less reactive polyol I system does not.  相似文献   

17.
The network analysis method was applied to AT cut quartz blanks (f(0) = 10 MHz), which were loaded with liquids of low and medium viscosity (water, methanol, ethanol, 1-propanol, 1-butanol, glycerol solutions). The shift of the resonance frequency Δf could be separated into a term due to rigidly coupled mass Δf(rig) and a term due to viscous damping Δf - Δf(rig). From the difference Δf - Δf(rig) and the broadening of the resonance curve, the complex shear modulus G = G' + iωη(L) was calculated. The viscosity coefficients η(L) are in good agreement with literature data. As G' > 0, it can be concluded that the examined fluids also reveal elasticity at shear frequencies in the MHz range. For the low-viscosity liquids, elastic contributions resulting from collective interactions of molecules are measurable but small and neglectable in most applications. The medium viscous liquid glycerol (98%) begins to exhibit considerable elasticity, resulting from the relaxation of separate molecules.  相似文献   

18.
This paper presents multiscale modeling substantiated with experimental aspects of state, filtration, and motion of the gas–liquid mixtures involving phase transition regions in concentrated volumes applicable to porous media and pipe flows. Based on physics, it is confirmed analytically that actual levels of underpressure in gas–liquids systems are considerably above traditional understanding of saturation pressure at which gas emission from the liquid and its dissolution in the liquid in a form of embryos can occur. It is demonstrated that these processes are not equilibrium processes, and they can also occur on nanoscales and microscales. Thermo-hydrodynamic analyses and experimental investigation of the gas–liquid systems in areas of phase transition presented here have resulted in useful equations governing such flows in filtration in the porous media and in straight pipes.  相似文献   

19.
Material identification is a technology that can help to identify the type of target material. Existing approaches depend on expensive instruments, complicated pre-treatments and professional users. It is difficult to find a substantial yet effective material identification method to meet the daily use demands. In this paper, we introduce a Wi-Fi-signal based material identification approach by measuring the amplitude ratio and phase difference as the key features in the material classifier, which can significantly reduce the cost and guarantee a high level accuracy. In practical measurement of Wi-Fi based material identification, these two features are commonly interrupted by the software/hardware noise of the channel state information (CSI). To eliminate the inherent noise of CSI, we design a denoising method based on the antenna array of the commercial off-the-shelf (COTS) Wi-Fi device. After that, the amplitude ratios and phase differences can be more stably utilized to classify the materials. We implement our system and evaluate its ability to identify materials in indoor environment. The result shows that our system can identify 10 commonly seen liquids with an average accuracy of 98.8%. It can also identify similar liquids with an overall accuracy higher than 95%, such as various concentrations of salt water.  相似文献   

20.
Membranes formed of thermodynamically stable cubic phase lyotropic liquid crystals (LLCs) could replace the presently used polymeric membranes, applied to reduce the flux of glucose in semicontinuous, subcutaneously implanted, user-replaced, miniature, amperometric glucose sensors, assisting in the management of diabetes. LLC-forming amphiphilic compounds set and toughen spontaneously after mixing with water, without undergoing chemical change. When applied by doctor-blading, they form membranes having three-dimensionally interconnected water channels of uniform diameter, with reproducible glucose transport-characteristics. We find that the best studied cubic phase LLCs, which are formed of monoolein and water, are not useful in their intended application because they are hydrolyzed by serum lipases. Those formed of phytantriol, a liquid at ambient temperature, and water, are not hydrolyzed but change their shape and size in a dehydration and rehydration cycle. Because glucose sensors are sterilized and stored in a sealed package in a dry atmosphere, drying and rehydration must not change the transport characteristics. A third, novel, LLC-forming, amphiphile 1-O-beta-(3,7,11,15-tetramethylhexadecyl)-d-ribopyranoside, I, was synthesized, and its phase diagram was tailored by adding Vitamin E acetate, to form a cubic phase. The phase was stable through the 20 degrees C-90 degrees C temperature range in excess of water and had the desired glucose-transport characteristics. A preferred LLC, II, was formed of water and I containing 7 wt % of Vitamin E acetate. When II was applied to a wired glucose oxidase bioelectrocatalyst, sensors of reproducible glucose-sensitivity were formed. At a 0.1 mm thickness of II, the membrane reduced the glucose flux 5-fold and increased the 90% response-time by less than 2 min. The membrane was mechanically rugged, withstanding the approximately 1 N m(-2) maximal shear stress at 5 mm diameter electrodes rotating at 4000 rpm. The activation energy for glucose permeation through II was reduced to 15.6 kJ/mol, making the sensors's current less temperature-dependent than that of the polymeric-membrane overcoated implantable glucose sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号