首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The dynamics of the scattering processes of diatomic molecules from metal surfaces has been studied with different theoretical approaches. Modified LEPS (London-Eyring-Polanyi-Sato) potential surfaces for several diatomie molecule-surface systems have been constructed and examined for the dynamic study. The surfaces are treated as rigid but corrugated. The potential parameters are adjusted to produce reliable potential hypersurfaces. Molecular dissociation, diffraction, adsorption and consequent desorption in the scattering processes have been observed through quasiclassieal trajectory calculations. The significance of the effective corrugation of the potential surfaces has been evaluated in calculating the dissociation and adsorption probabilities. Vibration-rotation-translation energy transfer in the inelastic scattering is investigated to understand the mechanism of selective adsorptions mediated through vibrational or rotational degrees of freedom. We have carried out quantum mechanical calculations to obtain the rotational and vibrational transition probabilities. Relative importance of rotational and vibrational transitions for each adsorbed state with respect to incidence energy has been carefully examined to determine the dominant factor which causes the adsorbed state. The results show that vibration mediation is an essential factor to the selective adsorption especially in the ease of higher incidence energies.  相似文献   

2.
Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable promising solution for their long-term irradiations. superhydrophobic surfaces provides a service under UV or strong solar light  相似文献   

3.
Polypropylene (PP) was treated by an oxygen capacitively coupled radio frequency plasma (CCP) under a radio frequency (RF) power of 200 W for exposure time of 1, 5, and 10 rain. The ageing process of the plasma- treated PP was studied at an ageing temperature of 90 ~C during an ageing time up to 25 h. The formation of the nanotextures with different geometry and aspect ratio and the grafting of large number of oxygen- containing groups were achieved on as-treated PP surfaces under the oxygen CCP treatment for the increased exposure time. The hydrophilicity on the as-treated PP surfaces with the stable nanotextures was rapidly depressed during the ageing process at 90 ℃ due to the restructuring of chemical composition. The surface restructuring rate was dependent on the aspect ratio and the oxygen-containing groups on the nanotextured PP with increasing exposure time. The hydrophobic over-recovery to high hydrophobicity and superhydrophobicity were observed on the post-aged surfaces with the stable nanofibrils from as-treated hydrophilic surfaces. The superhydrophobicity with the low water adhesion was achieved on the post-aged surfaces preserving the nanofibrils with high aspect ratio and large distance due to the decrease of the oxygen-containing groups after the surface restructuring.  相似文献   

4.
Despite their outstanding combination of properties, titanium and its alloys are very susceptible to severe adhesive wear in rubbing with most engineering surfaces and can exhibit poorcorrosion resistance in some aggressive environments. Surface engineering research centred at the University of Birmingham has been focused on creating designer surfaces for titanium components via surface engineering.Great progress has been made recently through the development of such advanced surface engineering techniques as thermal oxidation, palladium-treated thermal oxidation, oxygen boost diffusion and duplex systems.Such advances thus provide scope for designing titanium components for a diversified range of engineering application, usually as direct replacements for steel components. By way of example, some of the successful steps towards titanium designer surfaces are demonstrated. To data, the potential of these advanced technologies has been realised first in auto-sport and off-shore industrials.  相似文献   

5.
First-principle calculations,especially by the density functio nal theory(DFT),is used to study the structure and properties of oxygen/metal interfaces.Adsorption of oxygen molecules or atoms on metal surfaces plays a key role in surface science and technology.This review is dedicated to the adsorption of oxygen molecules or atoms on metal surfaces and diffusion behavior from first-principle investigation.We hope that this review can provide some useful contributions to understa nd the study of adsorption properties and diffusion behavior on a metal surface at an atomic-scale,especially for those interested in catalytic oxidation and application of corrosion.  相似文献   

6.
Friction stir processing (FSP) was applied to extruded Al-Mg-Sc alloy to produce fine-grained microstructure with a grain size of 2.2 μm. Electron backscatter diffraction (EBSD) result showed that the grain boundary misorientation distribution was very close to a random grain assembly for randomly oriented cubes. Superplastic investigations in the temperature range of 425-500 ℃ and strain rate range of 1×10 2 -1×10 0 s -1 showed that a maximum elongation of 1500% was achieved at 475 ℃ and a high strain rate of 1×10 1 s -1 . The FSP Al-Mg-Sc exhibited enhanced superplastic deformation kinetics compared to that predicted by the constitutive relationship for superplasticity in fine-grained aluminum alloys. The origin for enhanced superplastic deformation kinetics in the FSP alloy can be attributed to its high fraction of high angle grain boundaries (HAGBs). The analyses of the superplastic data and scanning electron microscopy (SEM) examinations on the surfaces of deformed specimens indicated that grain boundary sliding is the main superplastic deformation mechanism for the FSP Al-Mg-Sc alloy.  相似文献   

7.
This work presents an in-situ technique to quantify the layer-by-layer roughness of thin films and heterostructures by measuring the spectral profile of the reflection high-energy electron diffraction(RHEED).The characteristic features of the diffraction spot,including the vertical to lateral size ratio c/b and the asymmetrical ratio c1/c2 along the vertical direction,are found to be quantitatively dependent on the surface roughness.The quantitative relationships between them are established and discussed for different incident angles of high-energy electrons.As an example,the surface roughnesses of LaCoO3 films grown at different temperatures are obtained using such an in-situ technique,which are confirmed by the ex-situ atomic force microscopy.Moreover,the in-situ measured layer-by-layer roughness oscillations of two LaCoO3 films are demonstrated,revealing drastically different information from the intensity oscillations.The experiments assisted with the in-situ technique demonstrate an outstanding high resolution down to-0.1 A.Therefore,the new quantitative RHEED technique with real-time feedbacks significantly escalates the thin film synthesis efficiency,especially for achieving atomically smooth surfaces and interfaces.It opens up new prospects for future generations of thin film growth,such as the artificial intelligence-assisted thin film growth.  相似文献   

8.
According to the principle of meshing engagement and the theory of the digitized conjugate surface, this paper applies the software Conjugatcr-1.0 that is developed by ourselves to compute, respectively, the digitized conjugate curved surfaces of the straight-tooth surface and drum-tooth surface,which will establish the theoretical and technical foundation for digitized engaging analysis, simulation, and digitized manufacturing technology of the diversified gears.  相似文献   

9.
Oxidation of Alloy 690 TT samples either manually ground to 400 and 1500 grit, mechanically polished, or electropolished was performed in a solution of 1500 10 6B and 2.3 10 6Li with 2.5 10 6dissolved H2, at 325℃ and 15.6 MPa for 60 days. The oxide films grown on samples with different surface states were analyzed using various techniques. Results show that a triple-layered structure was formed after immersion: an outermost layer with large scattered oxide particles rich in Fe and Ni, an intermediate layer with small compact oxide particles rich in Cr and Fe for the ground surfaces and loose needle-like oxides rich in Ni for the polished surfaces, and an inner layer with continuous Cr-rich oxides. The surface state was found to affect not only the surface morphology, but also the corrosion rate. Grinding accelerated the growth of protective oxide films such that the ground samples showed a lower oxidation rate than the polished ones.Samples of ground Alloy 690 TT showed superior resistance to intergranular attack(IGA).  相似文献   

10.
In this work, the corrosion behavior of two differently oriented surfaces of an as-extruded Mg–3%Al–1%Zn(AZ31) bar in a simulated body ?uid of phosphate buffer saline(PBS) medium was investigated and compared, and the effect of crystallographic texture on corrosion resistance of the alloy was deeply described. The results showed that at the early stage of immersion, a layer of compact and ?at ?lm formed easily on surfaces of both oriented samples. With prolonged immersion time, the degradation of formed corrosive ?lms started and their severity was quite sensitive to the composed crystallographic planes of sample surfaces. For the surface containing highly concentrated orientation of {10–10} and {11–20} prism planes, the degradation of formed corrosive ?lm was quite slight and only occurred at some particular sites even after immersion for 48 h. Thus, the ?lm could keep good corrosive protection to the underneath substrate. However, for the surface containing {0002} basal planes, {10–10} and {11–20} prism planes, the degradation of corrosive production ?lm occurred widely, resulting in further decrease in the corrosion resistance of immersed samples.  相似文献   

11.
Alloy 690TT samples with four kinds of surface states were prepared: 1) ground to 400 grit; 2) ground to 1500 grit; 3) mechanically polished (MP) and 4) electro-polished (EP). The surface morphologies and the surface skin layers microstructures of these samples were characterized systematically using various methods and the effects of surface states on the oxidation behaviours of Alloy 690TT were also discussed. The results showed that surface roughness and micro-hardness decreased gradually from the ground to EP surfaces. The grains in the near-surface layers of the ground and MP surfaces had been refined and the residual strains were also very high. The dislocations on the ground surfaces were mainly parallel dislocation lines. The thickness of the superficial cold-worked layers decreased gradually from the ground surfaces to polished surfaces. The oxide morphologies and oxidation rate depended greatly on the surface states of samples. Cold-working by grinding treatments could benefit the outward diffusion of metallic atoms and the nucleation of surface oxides and then accelerate the growth of surface oxide films.  相似文献   

12.
1 IntroductionInvestigation of the utilization of devices and equipment is the basis for the management of them. To improve equipment management, it is necessary to introduce quantitative management into equipment management. Although quantitative management is quite tedious at the beginning, it is more reasonable, and it can provide a more scientific basis for the equipment management offices to draw up annual equipment procurement plan. For the users of equipment, it is more convenient to kn…  相似文献   

13.
The formation of fine,non-dendritic equiaxed grains throughout a casting without the addition of refiners(i.e.independent of alloy chemistry),is made possible by using ultrasonic,magnetic or pulsed magnetic and electric current pulse techniques.The dominant mechanisms proposed for the grain refinement produced during the application of an external field are cavitation phenomena assisted nucleation or fragmentation of dendrites(ultrasonic field),wall crystals arising from the cold surface of the mould(electric current pulse,magnetic and pulsed magnetic fields).In all these cases fluid flow provides an additional contribution(e.g.reduced temperature gradients,growth rate and remelting of dendrites)to maintaining an equiaxed grain structure.The origin of equiaxed grains under an external field also depends on the casting conditions(volume and shape of casting)and the type of alloy other than the mechanisms specific to a particular technique.The current work aims to provide a detailed understanding of the various factors and mechanisms that influence the grain refinement achieved during the solidification of pure metals(magnesium and zinc)subjected to Ultra Sonic Treatment(UST).The role of the temperature range of UST application,time duration and an unpreheated sonotrode are examined with respect to the origin,evolution of equiaxed grain structure,morphology and the columnar to equiaxed transition.The origin of grains was analysed from three fundamental aspects that contribute to refinement(i)heterogeneous nucleation(ii)fragmentation of existing dendrites and(iii)grains produced from the colder surfaces(arising from mould walls or vibrating surfaces as wall crystals).A comparison of UST refinement with mechanical,low-frequency vibration,electric current pulse and magnetic field solidification of pure metals has also been provided to highlight the importance of the cold surfaces(sonotrode and mould wall)in influencing grain refinement.  相似文献   

14.
Liver normal cells and cancer cells co-cultured on surfaces modified by different chemical functional groups, including mercapto (-SH), hydroxyl (-OH) and methyl (-CHz) groups. The results showed that different cells exhibited changes in response to different surfaces. Normal cells on -SH surface exhibited the smallest contact area with mostly rounded morphology, which led to the death of cancer cells, while cancer cells could not grow on -CH3 groups, which also died. In the co-culture system, the -CH3 group exhibited its unique effect that could trigger the death of cancer cells and had no effects on normal cells. Our findings provide useful information on strategies for the design of efficient and safe regenerative medicine materials.  相似文献   

15.
Liquid Phase Bonding of 316L Stainless Steel to AZ31 Magnesium Alloy   总被引:1,自引:0,他引:1  
The excellent corrosion resistance,formability and strength make stainless steels versatile for diverse applications.However,its high specific strength and good crashworthiness make it suitable for transportation and aerospace industry.On the other hand,the need to reduce the weight of vehicle and aerospace components has created renewed interest in the use of magnesium alloys.Due to their differences in physical and metallurgical properties,bonding of the 316L steel and AZ31 magnesium alloy using conventional fusion welding methods encountered many limitations.Therefore,the use of liquid phase forming interlayers is required to overcome the differences in their properties,eliminates the need for a high bonding pressure to achieve intimate contact between the bonded surfaces.Both Cu and Ni interlayers successively formed a eutectic phase with magnesium.The formation of intermetallics and Mg diffusion caused the eutectic phase to isothermally solidify with increasing bonding time.The formation of ternary intermetallic phases(λ1 and B2) impaired the bond shear strength particularly at the end of the isothermal solidification stage where no eutectic phase was observed.However,the joints showed a higher shear strength value of 57 MPa when bonding with Cu interlayer at 530℃ for 30 min compared to 32 MPa when Ni interlayer was used at 510℃ for 20 min.  相似文献   

16.
Ultrasonic vibration-assisted laser surface processing that involves application of vertical ultrasonic vibrations to the Ti-6 Al-4 V alloy substrates while being irradiated with a CO_2 laser was performed for the development of laser melted and textured surfaces with potential applications in biomedical implants.The laser processing resulted in very consistent repeating undulating grooved surfaces, and the undulations were significantly more pronounced in the samples processed with higher ultrasonic power outputs.The phase evolution, studied by x-ray diffraction, confirmed that the laser processing triggered transformation of globular α→ acicular α and martensitic α' as well as increased amounts of retained α phases,which were also reflected in the microscopic analysis. The surface texture developed by laser processing resulted in increased surface wettability with increasing ultrasonic power output. The textured surfaces exhibited marked decrease in coefficients of friction during sliding wear testing performed under simulated body fluid due to lubricant entrainment within the textured grooves. The texturing also resulted in significant reduction in surface contact area during the wear process, which considerably reduced the overall wear rates due to abrasive wear.  相似文献   

17.
The dynamics of drop spreading on horizontal smooth surfaces of different wettabilities is revisited using computational fluid dynamics (CFD). For this purpose, a recently developed CFD model, based on the volume of fluid technique (VOF), with piecewise linear interface calculations method (PLIC) for interface reconstruction, is generalized and applied to simulate the time evolution of spreading drops on solid surfaces (drop base radius and dynamic contact angle). The CFD simulations are quantitatively compared with previously published experimental results from other research groups. The influence of different factors, such as oils nature (silicone, mineral, peanut and coconut), viscosity (0.02-1 Pa.s), drop volume (0.3-38 μL) and type of surfaces (hydrophilic glass, stainless steel and hydrophobic glass) on the temporal evolution of the drop base radius and contact angle is investigated. For hydrophilic surfaces, the predictions of the CFD model agree remarkably well with the measurements. For hydrophobic surfaces, a small deviation between calculated and experimental results occurs because the model does not consider the partial slippage which can take place on hydrophobic materials. Despite neglecting this aspect, the simulations are found to capture the key features of drop spreading on hydrophobic surface. The fact that we obtain a good agreement between the proposed theory and the experimental results for a large range of oils and surfaces over five decades of time is a strong argument in favor of the model. The accuracy of the model demonstrates also that the influence of the surface wettabity (partial wetting and complete wetting) can be successfully simulated. The numerical results reproduce perfectly the spreading regimes which occur during the time course of the drop. The succession of two different regimes takes place in the following order: a hydrodynamic regime followed by a gravity regime.  相似文献   

18.
Nitrogen ion was implanted into the nano-TiO2 film surfaces by electron cyclotron resonance (ECR) plasma modification to improve the optical reactivity in visible-light region for nano-TiO2. Diagnosing the N2 plasma by optical emission spectroscopy (OES) was applied to the process of plasma modification. X-ray photoelectron spectroscopy (XPS) was used for analysis of the binding of element after plasma modification. It is shown that the surface modification was caused by excitated N. The injecting of N2 and N+ leads to the increase in the dissociative interstitial state N in the films. The doped N makes for TiO2-xNx appearing in the TiO2 films. TiO2-xNx forms the impurity energy state in the TiO2 energy band gap and reduces the energy band gap. This is the main reason leading to the red shift of absorption edge.  相似文献   

19.
The role of double oxide film (bifilm) defects in the formation of gas porosity in commercial purity and Srcontaining AI alloys was investigated by means of a reduced pressure test (RPT) technique. The liquid metal was poured from a height into a crucible to introduce oxide defects into the melt. The melt was then subjected to different "hydrogen addition" and "holding in liquid state" regimes before RPT samples were taken. The RPT samples were then characterized by determining their porosity parameters and examining the internal surfaces of the pores formed in them by scanning electron microscopy. The results indicated oxide defects as the initiation sites for the growth of gas porosity, both in commercial purity and Sr-containing AI alloys. The results also rejected reduction of the surface tension of the melt, increase in the volumetric shrinkage and reduction in interdendritic feeding as the possible causes of an increase in the porosity content of the AI castings modified with strontium. The change in the composition of the oxide layers of double oxide film defects was suggested to be responsible for this behaviour.  相似文献   

20.
Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spec- troscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号