首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Yi Luo  Jinhe LiuHong Ye 《Vacuum》2011,86(1):11-17
Seen from gas-liquid two-phase-flow system, the gas phase and liquid phase of bubble flow in weld pool are studied by means of isolated phase based on the conservation of mass and momentum. The two-dimensional fractional flow model of bubble flow in weld pool of vacuum electron beam welding is developed. And the gas distribution and the phenomenon of bubble flow in weld pool of AZ91D magnesium alloy are simulated to analyze the formation and distribution of cavity defects. The results show that the possibility of gas escape in fully penetrated weld pool is much greater than non-penetrated weld. It appears that the probability of cavity defects is lower than non-penetrated weld to some extent. The formation of typical cavity defects is closely related to the flow pattern and flow characteristics of the bubble flow in deep penetration weld pool of vacuum electron beam welding. Higher liquid flow rate is more conducive to the escape of gas in molten metal, so that the final porosity in weld is low.  相似文献   

2.
The governing equations of two-dimensional bubble flow model for gas–liquid two-phase system in deep penetration molten pool of vacuum electron beam welding were developed according to the laws of mass and momentum conservation. The separation models of gas and liquid convections in bubble flow were formed by regarding the gas phase in molten pool as a particle phase, and the vacuolar fraction, velocity slip, pressure gradient and other factors were introduced into the models. The influences of the gravity state upon the convection of bubble flow and the distribution of cavity-type defects in molten pool of AZ91D magnesium alloy were studied by the method of numerical simulation based on the mathematical models. The results showed that the gravity is an important factor to drive the convection of the bubble flow in the deep penetration molten pool during vacuum electron beam welding. The gravity has an impact on the gas distribution in molten pool, thus affects the distribution of cavity-type defects in weld. Because of the gravity contributing to driving the convection of bubble flow, it is conducive to the escape of gas phase in molten pool and reducing the air rate. A larger convection velocity of gas phase is helpful to the escape of gas phase, thus reduce the tendency of cavity-type defects.  相似文献   

3.
Physical and Thermal Processes During Electron Beam Welding   总被引:2,自引:0,他引:2  
Complicated processes of the seam formation during electron beam welding are described. The physical processes in the weld pool and in the vapor-plasma mixture emitted in the cavity into the liquid metal created by intensive high energy beam are discussed. The dynamics of the liquid metal in the weld pool are interconnected with the energy distribution of the electron beam in the cavity which influences the weld depth and width and controls the defect formation in the weld such as pores (blow holes), non-uniformity of the weld root (spiking) and rippled weld surface. The moving heating source, working in the weld pool of metal samples is steady only as a first approximation due to the molten pool dynamics. A more exact heat model of the electron beam welding must take into account the unstable nature of beam transport within vapors and gas plasma in the cavity as well as the variations of energy dissipation on the crater walls and of heat transfer through molten metal of the weld pool.  相似文献   

4.
In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes present in the turbulent pool are linked to diffusivity and Prandtl number variation. It was shown that below a critical value of Rayleigh number, the conduction mode of melt transfer signifying beam absorption becomes dominant. Above this value, convective heat transfer indicates melting and evaporation occurring in the weld pool during laser welding. The evaporative recoil pressure expels the liquid while surface tension and hydrostatic pressure help to retain the melt in the keyhole cavity in this high power laser beam welding. The understanding of several hydrodynamic phenomena occuring in the weld pool is valuable not only for understanding basic mechanistic aspects but also for process optimization involved in laser beam welding.  相似文献   

5.
In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speedGMAWto predict the tendency of bead undercuts is of great significance to prevent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simplified the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of different welding parameters on the bead undercut tendency.  相似文献   

6.
In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to prevent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simplified the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of different welding parameters on the bead undercut tendency.  相似文献   

7.
Abstract

Conduction laser welding involves initiating a melt pool by exposure to high power laser induced light and controlled thermal conduction. Existing welding techniques generally provide enough energy to join the component but have no real control over the melt pool. This process can invariably lead to overheating in adjacent areas or even the melt pool itself, often causing unavoidable effects, such as ‘burn through’. The present work presents a procedure in which a desired melt pool shape is conceived, and a bespoke beam irradiance distribution is designed to match. The beam is shaped not by conventional lenses but by a diffractive holographic optical element (DHOE). The DHOE utilises holography to wholly create highly complex three-dimensional energy distributions through constructive and destructive interference. This technique allows novel beam irradiance distributions to be applied to conduction mode laser welding, with the melt pool transverse profile being shaped to a specific design. Holographic conduction laser welding has been shown to be successful and represents a significant step forward in the industry, as demonstrated in this case in both mild and stainless steels. The fusion zone is shown to be particularly influenced by the shape of the illuminating laser beam profile, and many of the welds demonstrate a highly novel weld profile because of this. The use of a bespoke beam irradiance distribution allows control of the heat flow to the workpiece, and this allows greater control over material migration due to surface tension effects. Many of the welds demonstrate unique surface solidification patterns directly linked to the beam profile used. The DHOE also presents a number of additional advantages, such as an increased usable depth of field, allowing for less stringent set-up tolerances. Comprehensive metallography has been performed on samples of these welds through the use of optical microscopy, electron microscopy, electron backscatter diffraction and energy dispersive (X-ray) spectroscopy. These techniques offer in depth analysis of crystal size, shape, orientation and phase. By incorporating DHOEs into a laser welding process, not only does the melt pool shape become controllable, but also the crystal growth is highly influenced. Many of the undesirable attributes of a conventional laser weld are reduced by using a beam distribution created by a DHOE, bringing the microstructure of the weld pool closer to that of the parent material.  相似文献   

8.
Yi Luo  Hong YeChanghua Du  Huibin Xu 《Vacuum》2012,86(9):1262-1267
The influence of focusing thermal effect upon the weld shape, microstructure and alloying elements distribution in the welded joints during vacuum electron beam welding on AZ91D magnesium alloy was studied. The results show that the focus state affects the offset of DOF, and further significantly affects the actual welding heat input in the process of vacuum electron beam welding. The sharp focusing state is characterized with higher welding energy density, but the welding energy density of defocusing state is lower. Therefore, the welding process with sharp focusing state and smaller calculation welding heat input can obtain the same weld penetration as the welding process is the conditions of defocusing state and larger calculation welding heat input. And the welding process of sharp focusing state and smaller calculation welding heat input can induce more strongly burning loss of Mg element than the conditions of defocusing state and larger calculation welding heat input. Then, which will affect the distribution of alloy elements in weld seam.  相似文献   

9.
Double shielded gas tungsten arc welding (GTAW, also known as tungsten inert gas (TIG) welding) of an SUS304 stainless steel with pure inert argon as the inner layer shielding and the Ar-CO2 or CO2 active gas as the out layer shielding was proposed in this study to investigate its effect on the tungsten electrode protection and the weld shape variation. The experimental results showed that the inner inert argon gas can successfully prevent the outer layer active gas from contacting and oxidizing the tungsten electrode during the welding process. Active gas, carbon dioxide, in the outer layer shielding is decomposed in the arc and dissolves in the liquid pool, which effectively adjusts the active element, oxygen, content in the weld metal. When the weld metal oxygen content is over 70×10-6, the surface-tension induced Marangoni convection changes from outward into inward, and the weld shape varies from a wide shallow one to a narrow deep one. The effect of the inner layer gas flow rate on the weld bead morphology and the weld shape was investigated systematically. The results show that when the flow rate of the inner argon shielding gas is too low, the weld bead is easily oxidized and the weld shape is wide and shallow. A heavy continuous oxide layer on the liquid pool is a barrier to the liquid pool movement.  相似文献   

10.
A transient three‐dimensional model that describes physical phenomena inside a welding pool during gas–metal arc welding process is presented. The model considers such phenomena as heat‐mass transfer, electromagnetics, hydrodynamic processes and deformation of the weld pool free surface. The fluid flow in the weld pool is induced due to the presence of the mechanical impact of the droplets, thermo‐capillary surface tension, thermal buoyancy and electromagnetic forces. The weld pool surface deformation is calculated by considering arc pressure and droplet impact force. A comparative analysis of the impact of the electric current of the welding arc and different force factors causing the motion of liquid metal in the weld pool on the shape of the welded seam was carried out and discussed.  相似文献   

11.
为实现铜/钢异种材料的优质连接,研究了铜/钢焊接接头的显微组织特点及其组成,试验采用LHM-200等离子弧焊系统对紫铜(T2)与不锈钢(304)异种材料进行焊接,然后通过光学金相显微镜及能谱分析仪,观察分析接头显微组织,研究其接头组织结构及组成.研究结果表明:铜/钢异种材料的等离子弧焊焊缝在铜一侧为平直的,而在钢一侧则为半χ型,在铜侧界面形成漩涡状;在焊接接头的形成过程中铜元素的迁移和扩散主要依靠钢液的流动所带动;焊接接头显微组织主要为奥氏体组织,弥散分布着块状和粒状的铜和钢的固溶体组织,和黑色鱼骨状的α相铁素体组织;焊缝区组织主要是以α、γ富铁相和ε富铜相固溶体组织的形式存在.通过实现发现最佳的焊接参数为:保护气流量与离子气流量分别为0.25 L/min和0.75 L/min,焊接电流为65 A,焊接速度为4 mm/s,焊接后的接头抗拉强度能达到174 MPa.  相似文献   

12.
Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value, 80×10-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters. The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape.  相似文献   

13.
Superalloy 718 in the solution-treated condition was welded autogenously by electron beam welding and gas tungsten are welding processes. The weldrnents after suitable heat treatment were subjected. to creep/stress rupture testing at 650°C and 690 MPa. The results showed that the Laves phase resulting in the weld metalis deterimental to the creep rupture life of weld metals when present With the continuous morphology found in gas tungsten are welds. The lower amounts and discontinuous morphology of the Laves phase in electron beam weldments in combination With favourable gramonentauon resulted in relatively better rupture properties for these weldments.  相似文献   

14.
为了更深入地探究电子束焊接过程中的机理问题,利用数值软件Fluent,对10mm厚的2219铝合金电子束焊接熔池进行三维瞬态模拟。分析电子束焊接进入准稳态后熔池中涡流的变化规律和产生原因,并结合电子束与匙孔壁面相互作用进行讨论。结果表明:电子束焊接进入准稳态后熔池呈周期性波动;根据液态金属流动情况可将焊接熔池分为3个区域,区域Ⅰ中的液态金属维持了熔池体积的稳定,区域Ⅱ中的涡流起到扩大熔池表面的作用,区域Ⅲ中的涡流促使匙孔坍塌;通过对电子束与匙孔壁面的耦合分析可知,电子束在匙孔壁面上并不是均匀分布的,这造成了匙孔底部具有一定的滞后性。  相似文献   

15.
In order to investigate the effect of atomic oxygen exposure of an aluminum alloy on bubble formation during welding, electron beam welding was performed on the samples exposed to atomic oxygen produced by the oxygen plasma method. The change in the aluminum surface due to the exposure was analyzed by auger electron spectroscopy. Due to the exposure of atomic oxygen, the thickness of the aluminum oxide film increases on the surface, and pores are formed during welding. The pores can be formed by the formation of the Al2O gas through the reaction between the aluminum oxide and aluminum in a high vacuum.  相似文献   

16.
Chao-Ting Chi  Chuen-Guang Chao 《Vacuum》2008,82(11):1177-1182
In the last half century, lightweight magnesium alloy has gradually shifted from military applications to civil applications. More noteworthy is that its low melting point, high thermal conductivity, and superior fluidity are good for weld pool flow and welding parameter research. This paper presents a novel approach to these characteristics, which analyzes the influences of electron beam welding parameters on weldment strength and defect formation by linking Taguchi's method with the grey relational analysis. Not only are the parameter contribution and the defect weight individually quantified, but also the relationship between welding parameters and defect dimensions can also be obtained this way.  相似文献   

17.
目的 研究平板对接电子束焊接过程中Ti2AlNb合金接头的残余应力及变形规律。方法 采用高斯圆柱体和高斯面组合热源模型模拟了6.6 mm厚的Ti2AlNb合金平板对接电子束焊过程,对比研究了高焊速高束流和低焊速低束流2种工艺参数下焊接接头的残余应力和变形分布规律,并用小孔法测量了焊缝中心及距焊缝中心10 mm位置的残余应力值。结果 在高焊速高束流参数下,获得了熔池体积小、熔池宽度窄(为3.62 mm)、深宽比高的焊缝;在该参数下焊缝横截面上的高应力集中区(应力在900 MPa以上)尺寸较小,其宽度仅为低焊速低束流参数下的89%;同时,在高焊速高束流参数下,焊缝法向变形最大值为0.79 mm,低于低焊速低束流参数下的0.82 mm;模拟计算所得残余应力与实测值的误差在5.64%以内。结论 高束流高焊速工艺具有热输入小、热量集中、加工效率高的特点,有助于获得高应力集中区域小、深宽比高、变形小的焊缝,比低束流低焊速工艺更具优势。  相似文献   

18.
Yi Luo  Jinhe Liu 《Vacuum》2010,84(6):857-863
According to the analysis to the characteristics of welding heat source and thermal effect, a mathematic model of rotary Gaussian body heat source with incremental power-density-distribution was developed, which was in line with the characteristics of heat source during vacuum electron beam welding. The affecting radius of source model decreases progressively with the law of Gaussian function and the power density varies gradually with the law of exponential function in depth direction. The evaluation of peak-power-density coefficient β and the tomographic calculation of the source model in different focused conditions were discussed. The results showed that the focused conditions, which were the deviation of depth of field in electron beam, were dependent on the coefficient β in the source model. Simulation of thermal effect and the analysis of weld formation in vacuum electron beam welding validated the feasibility of the model.  相似文献   

19.
目的探究工艺参数对K418高温合金焊接裂纹的影响,减少焊接过程中裂纹的产生。方法采用真空电子束对2mm的薄板K418高温合金进行焊接试验,通过改变工艺参数来调控焊接裂纹,使用光学显微镜对焊缝显微组织进行观察,使用显微硬度计对试样进行硬度测量,万能拉伸计对接头进行拉伸试验,使用扫描电镜对断口进行观察。结果在焊接束流为24 mA,焊接速度为600 mm/min时,扫描波形为O形,频率为500 Hz时,焊接接头表面未发现裂纹。通过拉伸试验发现断裂位置为母材,其断口为典型脆性解离断裂。结论采用合适的工艺参数可以减少或消除焊接接头表面裂纹的形成。  相似文献   

20.
One of the major concerns during high speed welding of magnesium alloys is the presence of porosity in the weld metal that can deteriorate mechanical properties. This study seeks to analyze the presence method and quantity of pore during hybrid laser-tungsten inert gas arc (TIG) welding of magnesium alloy AZ31B by radiography, optical microscopy and electron probe microanalysis (EMPA). At the same time, it identifies both the mechanism of pore formation and a remedy for this problem. The experimental results indicate that lacking of shielding gas for laser beam is the dominant cause of macroporosity formation during the hybrid of laser-TIG welding of magnesium Alloys AZ31B plate, and hydrogen is not main cause to form large pores. A favorable weld without porosity can be obtained by appending lateral shielding gas for laser beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号