首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For Si anode materials used for lithium ion batteries (LIBs), developing an effective solution to overcome their drawbacks of large volume change and poor electronic conductivity is highly desirable. Here, the composites of ZnO‐incorporated and carbon‐coated silicon/porous‐carbon nanofibers (ZnO‐Si@C‐PCNFs) are designed and synthesized via a traditional electrospinning method. The prepared ZnO‐Si@C‐PCNFs can obviously overcome these two drawbacks and provide excellent LIB performance with excellent rate capability and stable long cycling life of 1000 cycles with reversible capacity of 1050 mA h g?1 at 800 mA g?1. Meanwhile, anodes of ZnO‐Si@C‐PCNFs attached with Ag particles display enhanced LIB performance, maintaining an average capacity of 920 mA h g?1 at a large current of 1800 mA g?1 even for 1000 cycles with negligible capacity loss and excellent reversibility. In addition, the assembling method with important practical significance for a simple pouch full cell is designed and used to evaluate the active materials. The Ag/ZnO‐Si@C‐PCNFs are prelithiated and assembled in full cells using LiNi0.5Co0.2Mn0.3O2(NCM523) as cathodes, exhibiting higher energy density (230 W h kg?1) of 18% than that of 195 W h kg?1 for commercial graphite//NCM523 full pouch cells. Importantly, the comprehensive mechanisms of enhanced electrochemical kinetics originating from ZnO‐incorporation and Ag‐attachment are revealed in detail.  相似文献   

2.
Heteroatom‐doped carbon materials are intensively studied in supercapacitors and fuel cells, because of their great potential for sustainably bearing on the energy crisis and environmental pollution. Although enormous efforts are put in material perfection with a hierarchically porous microstructure, the simultaneous optimization of both porous structures and surface functionalities is hard to achieve due to inevitable concurrent dopant leaching effect and structural collapse under required high pyrolysis temperature. In this study, an in situ dehalogenation polymerization and activation protocol is introduced to synthesize nitrogen‐ and sulfur‐codoped carbon materials (NS‐PCMs) with hierarchical pore distribution and abundant surface doping, which endows them with good conductivity, abundant accessible active sites, and efficient mass transport. As a result, the as‐prepared carbon materials (NS‐a‐PCM‐1000) show an excellent mass specific capacitance of 461.5 F g?1 at a current density of 0.1 A g?1, long cycle life (>23 k, 10 A g?1), and high device energy and power density (17.3 Wh kg?1, 250 W kg?1). Significantly, NS‐a‐PCM‐1000 also exhibits one of the highest oxygen reduction reaction activities (onset potential of 1.0 V vs reversible hydrogen electrode) in alkaline media among all reported metal‐free catalysts.  相似文献   

3.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

4.
Synthesis of 3D flower‐like zinc‐nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N‐doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower‐like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550–1000 °C) and the removal method of in the situ‐generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970–1605 m2 g?1), nitrogen content (3.4–14.1 at%), pore volume (0.95–2.19 cm3 g?1), as well as pore diameter and structures. The carbon flowers prepared at 550 °C show high CO2/N2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal‐organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications.  相似文献   

5.
The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium‐ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom‐doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N‐doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self‐assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g?1 at 0.5 A g?1 and an ultrafast charge–discharge feature with a remarkable capacity of 340 mA h g?1 at an ultrahigh current density of 40 A g?1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g?1. More importantly, when coupled with LiFePO4 cathode, the fabricated lithium‐ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF.  相似文献   

6.
Herein, 1D free‐standing and binder‐free hierarchically branched TiO2/C nanofibers (denoted as BT/C NFs) based on an in situ fabrication method as an anode for sodium‐ion batteries are reported. The in situ fabrication endows this material with large surface area and strong structural stability, providing this material with abundant active sites and smooth channels for fast ion transportation. As a result, BT/C NFs with the character of free‐standing membranes are directly used as binder‐free anode for sodium‐ion batteries, delivering a capacity of 284 mA h g?1 at a current density of 200 mA g?1 after 1000 cycles. Even at a high current density of 2000 mA g?1, the reversible capacity can still achieve as high as 204 mA h g?1. By means of kinetic analysis, it is demonstrated that the remarkable surface pseudocapacitive behavior is also a major factor to achieve excellent performance. The rationally designed structure coupled with the inherent pseudocapacitive behavior gives this material potential for sodium‐ion batteries.  相似文献   

7.
Sulfur‐rich carbons are minimally explored for potassium‐ion batteries (KIBs). Here, a large amount of S (38 wt%) is chemically incorporated into a carbon host, creating sulfur‐grafted hollow carbon spheres (SHCS) for KIB anodes. The SHCS architecture provides a combination of nanoscale (≈40 nm) diffusion distances and C? S chemical bonding to minimize cycling capacity decay and Coulombic efficiency (CE) loss. The SHCS exhibit a reversible capacity of 581 mAh g?1 (at 0.025 A g?1), which is the highest reversible capacity reported for any carbon‐based KIB anode. Electrochemical analysis of S‐free carbon spheres baseline demonstrates that both the carbon matrix and the sulfur species are highly electrochemically active. SHCS also show excellent rate capability, achieving 202, 160, and 110 mAh g?1 at 1.5, 3, and 5 A g?1, respectively. The electrode maintains 93% of the capacity from the 5th to 1000th cycle at 3 A g?1, with steady‐state CE being near 100%. Raman analysis indicates reversible breakage of C? S and S? S bonds upon potassiation to 0.01 V versus K/K+. The galvanostatic intermittent titration technique (GITT) analysis provides voltage‐dependent K+ diffusion coefficients that range from 10?10 to 10?12 cm2 s?1 upon potassiation and depotassiation, with approximately five times higher coefficient for the former.  相似文献   

8.
To prepare highly N‐doped carbon materials (HNCs) as well as to determine the influence of N dopants on Na‐ion storage performance, hexamine‐based metal–organic frameworks are employed as new and efficient precursors in the preparation of HNCs. The HNCs possess reversible capacities as high as 160 and 142 mA h g?1 at 2 A g?1 (≈8 C) and 5 A g?1 (≈20 C), respectively, and maintain values of 145 and 123 mA h g?1 after 500 cycles, thus exhibiting excellent rate and long‐term cyclic performance. Based on systematic analysis, a new insight into the roles of the different N configurations in Na‐ion storage is proposed. The adsorption of Na ions on pyridinic‐N (N‐6) and pyrrolic‐N (N‐5) is fully irreversible, whereas the adsorption on graphitic‐N (N‐Q) is partially reversible and the adsorption on N‐oxide (N‐O) is fully reversible. More importantly, the N‐6/N‐Q ratio is an intrinsic parameter that reflects the relationship between the N configurations and carbon textures for N‐doped carbons prepared from in situ pyrolysis of organic precursors. The cyclic stability and rate‐performance improve with decreasing N‐6/N‐Q ratio. Therefore, this work is of great significance for the design of N‐doped carbon electrodes with high performance for sodium ion batteries.  相似文献   

9.
Aqueous Zn‐based hybrid energy storage devices (HESDs) exhibit great potential for large‐scale energy storage applications for the merits of environmental friendliness, low redox potential, and high theoretical capacity of Zn anode. However, they are still subjected to low specific capacities since adsorption‐type cathodes (i.e., activated carbon, hard carbon) have limited capability to accommodate active ions. Herein, a hierarchical porous activated carbon cathode (HPAC) is prepared via an in situ two‐step activation strategy, different from the typical one‐step/postmortem activation of fully carbonized precursors. The strategy endows the HPAC with a high specific surface area and a large mesoporous volume, and thus provides abundant active sites and fast kinetics for accommodating active ions. Consequently, pairing the HPAC with Zn anode yields an aqueous Zn‐based HESD, which delivers a high specific capacity of 231 mAh g?1 at 0.5 A g?1 and excellent rate performance with a retained capacity of 119 mAh g?1 at 20 A g?1, the best result among previously reported lithium‐free HESDs based on carbon cathodes. Further, the aqueous Zn‐based HESD shows ultra‐long cycling stability with a capacity retention of ≈70% after 18 000 cycles at 10 A g?1, indicating great potential for environmentally friendly, low‐cost, and high‐safety energy storage applications.  相似文献   

10.
Tin dioxide (SnO2) has attracted much attention in lithium‐ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next‐generation LIBs. Here, a novel solvent‐free approach to construct uniform metal–organic framework (MOF) shell‐derived carbon confined SnO2/Co (SnO2/Co@C) nanocubes via a two‐step heat treatment is developed. In particular, MOF‐coated CoSnO3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid‐phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF‐coated metal oxides. The as‐synthesized SnO2/Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g?1 after 100 cycles at 200 mA g?1 and excellent cycling stability with a retained capacity of 400 mAh g?1 after 1800 cycles at 5 A g?1. The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO2. This facile synthetic approach will greatly contribute to the development of functional metal oxide‐based and MOF‐assisted nanostructures in many frontier applications.  相似文献   

11.
Hierarchically porous carbon nanomaterials with well‐defined architecture can afford a promising platform for effectively addressing energy and environmental concerns. Herein, a totally green and straightforward synthesis strategy for the fabrication of hierarchically porous carbon nanotubes (HPCNTs) by a simple carbonization treatment without any assistance of soft/hard templates and activation procedures is demonstrated. A high specific surface area of 1419 m2 g?1 and hierarchical micro‐/meso‐/macroporosity can be achieved for the HPCNTs. The unique porous architecture enables the HPCNTs serving as excellent electrode/host materials for high‐performance supercapacitors and Li–sulfur batteries. The design strategy may pave a new avenue for the rational synthesis of hierarchically porous carbon nanostructures for high‐efficient energy storage applications.  相似文献   

12.
The large‐scale application of sodium/potassium‐ion batteries is severely limited by the low and slow charge storage dynamics of electrode materials. The crystalline carbons exhibit poor insertion capability of large Na+/K+ ions, which limits the storage capability of Na/K batteries. Herein, porous S and N co‐doped thin carbon (S/N@C) with shell‐like (shell size ≈20–30 nm, shell wall ≈8–10 nm) morphology for enhanced Na+/K+ storage is presented. Thanks to the hollow structure and thin shell‐wall, S/N@C exhibits an excellent Na+/K+ storage capability with fast mass transport at higher current densities, leading to limited compromise over charge storage at high charge/discharge rates. The S/N@C delivers a high reversible capacity of 448 mAh g‐1 for Na battery, at the current density of 100 mA g‐1 and maintains a discharge capacity up to 337 mAh g‐1 at 1000 mA g‐1. Owing to shortened diffusion pathways, S/N@C delivers an unprecedented discharge capacity of 204 and 169 mAh g‐1 at extremely high current densities of 16 000 and 32 000 mA g‐1, respectively, with excellent reversible capacity for 4500 cycles. Moreover, S/N@C exhibits high K+ storage capability (320 mAh g‐1 at current density of 50 mA g‐1) and excellent cyclic life.  相似文献   

13.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

14.
An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g?1), with great rate capability (248 mAh g?1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g?1 in 0.5 × 10?3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.  相似文献   

15.
3D cube‐shaped composites and carbon microparticles with hierarchically porous structure are prepared by a facile template‐free synthesis route. Via the coordination of zinc acetate dihydrate and squaric acid, porous 3D cubic crystalline particles of zinc squarate can be obtained. These are easily transformed into the respective zinc oxide carbon composites under preservation of the macromorphology by heat treatment. Washing of the composite materials results in hierarchically porous carbons with high surface areas (1295 m2 g–1) and large pore volumes (1.5 cm3 g?1) under full retention of the cube‐like architecture of the initial crystals. The materials are shown to be promising electrode materials for supercapacitor applications with a specific capacitance of 133 F g?1 in H2SO4 at a scan rate of 5 mV s?1, while 67% of this specific capacitance is retained, when increasing the scan rate to 200 mV s?1.  相似文献   

16.
The growth of white‐rot fungi is related to the superior infiltrability and biodegradability of hyphae on a lignocellulosic substrate. The superior biodegradability of fungi toward plant substrates affords tailored microstructures, which benefits subsequently high efficient carbonization and chemical activation. Here, the mechanism underlying the direct growth of mushrooms toward the lignocellulosic substrate is elucidated and a fungi‐enabled method for the preparation of porous carbons with ultrahigh specific surface area (3439 m2 g?1) is developed. Such porous carbons could have potential applications in energy storage, environment treatment, and electrocatalysis. The present study reveals a novel pore formation mechanism in root‐colonizing fungi and anticipates a valuable function for fungi in developing the useful porous carbons with a high specific surface area.  相似文献   

17.
Porous carbon nanotubes (CNTs) are obtained by removing MoO2 nanoparticles from MoO2@C core@shell nanofibers which are synthesized by phase‐segregation via a single‐needle electrospinning method. The specific surface area of porous CNTs is 502.9 m2 g?1, and many oxygen‐containing functional groups (C? OH, C?O) are present. As anodes for sodium‐ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g?1 after 1200 cycles at 5 A g?1). Those high properties can be attributed to the porous structure and surface modification to steadily store Na+ with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells.  相似文献   

18.
The CuS(x wt%)@Cu‐BTC (BTC = 1,3,5‐benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu3(BTC)2·(H2O)3 (Cu‐BTC) with a large specific surface area and CuS with a high conductivity. The as‐prepared CuS@Cu‐BTC products are first applied as the anodes of lithium‐ion batteries (LIBs). The synergistic effect between Cu‐BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu‐BTC sample exhibits a remarkably improved electrochemical performance, showing an over‐theoretical capacity up to 1609 mAh g?1 after 200 cycles (100 mA g?1) with an excellent rate‐capability of ≈490 mAh g?1 at 1000 mA g?1. The outstanding LIB properties indicate that the CuS(70 wt%)@Cu‐BTC sample is a highly desirable electrode material candidate for high‐performance LIBs.  相似文献   

19.
Sodium‐ion batteries (SIBs) have attracted great interest for large‐scale electric energy storage in recent years. However, anodes with long cycle life and large reversible capacities are still lacking and therefore limiting the development of SIBs. Here, a bulk Bi anode with surprisingly high Na storage performance in combination with glyme‐based electrolytes is reported. This study shows that the bulk Bi electrode is gradually developed into a porous integrity during initial cycling, which is totally different from that in carbonate‐based electrolytes and ensures facile Na+ transport and structural stability. The achievable capacity of bulk Bi in the NaPF6‐diglyme electrolyte is high up to 400 mAh g?1, and the capacity retention is 94.4% after 2000 cycles, corresponding to a capacity loss of 0.0028% per cycle. It exhibits two flat discharge/charge plateaus at 0.67/0.77 and 0.46/0.64 V, ascribed to the typical two‐phase reactions of Bi ? NaBi and NaBi ? Na3Bi, respectively. The excellent performance is attributed to the unique porous integrity, stable solid electrolyte interface, and good electrode wettability of glymes. This interplay between electrolyte and electrode to boost Na storage performance will pave a new pathway for high‐performance SIBs.  相似文献   

20.
Wearable devices and systems demand multifunctional units with intelligent and integrative functions. Smart fibers with response to external stimuli, such as electrical, thermal, and photonic signals, etc., as well as offering energy storage/conversion are essential units for wearable electronics, but still remain great challenges. Herein, flexible, strong, and self‐cleaning graphene‐aerogel composite fibers, with tunable functions of thermal conversion and storage under multistimuli, are fabricated. The fibers made from porous graphene aerogel/organic phase‐change materials coated with hydrophobic fluorocarbon resin render a wide range of phase transition temperature and enthalpy (0–186 J g?1). The strong and compliant fibers are twisted into yarn and woven into fabrics, showing a self‐clean superhydrophobic surface and excellent multiple responsive properties to external stimuli (electron/photon/thermal) together with reversible energy storage and conversion. Such aerogel‐directed smart fibers promise for broad applications in the next‐generation of wearable systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号