首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
张于贤  王红 《材料导报》2005,19(Z1):402-404
基于厚壁圆筒的弹性失效准则所确定的圆筒的初始屈服压力与材料的屈服极限的关系,设计了一种测定材料屈服极限的实验方法,并测得了一组实验数据.通过对该实验数据的分析得到了圆筒的初始屈服压力,最终求得了材料的屈服极限.由于该实验值与理论值误差较小,表明该实验方法具有较好的可靠性.该方法对研究材料的机械性能及压力容器的失效规律具有一定的工程实际意义和理论价值.  相似文献   

2.
基于厚壁圆筒的弹性失效准则所确定的圆筒的初始屈服压力与材料的屈服极限的关系,设计了一种测定厚壁圆筒初始屈服压力的实验方法,并测得了一组实验数据。通过对该实验数据的分析得到了圆筒的初始屈服压力。该实验值与理论值误差较小,表明了该实验方法具有较好的可靠性。  相似文献   

3.
在复杂应力状态下厚壁圆筒的极限分析   总被引:4,自引:0,他引:4  
应用双剪统一强度理论,考虑材料的拉压异性和同性,推导了在内压力和轴力联合作用下的厚壁圆筒的塑性极限载荷计算公式,并且绘制了其极限载荷线图。在这些计算公式中,当其系数取不同的值时,就能得到按Tresca屈服准则、线性逼近的Mises屈服准则和双剪应力屈服准则的计算结果。应用其极限载荷线图,根据其承受的载荷大小,就能判断厚壁圆筒是否达到了屈服极限状态。绘制了在不同屈服准则下的极限载荷线图,以便对其差异进行比较。  相似文献   

4.
在铝合金板温成形数值仿真中,成形极限图是判断材料颈缩失效和评价温冲压成形能力的基础.提出了一种温成形条件下铝合金板成形极限图的理论预测方法.采用曲线拟合方法建立了Al5083-O铝合金板应变硬化指数、应变率硬化指数随成形温度的变化规律;采用M-K理论模型,结合Logan-Hosford屈服函数计算获得温成形条件下铝合金板的成形极限图.计算结果与实验数据吻合较好,证实了温成形条件下铝板成形极限图的理论预测方法是正确的.  相似文献   

5.
初始缺陷对耐压结构承载性能影响   总被引:1,自引:0,他引:1  
目的基于有限元方法,通过分析研究深海耐压圆筒结构在不同初始缺陷下的屈曲压力,研究初始缺陷对厚壁圆筒承载极限的影响。方法建立了三维厚壁筒模型,分别研究了圆筒在初始几何缺陷、初始应力缺陷和两种缺陷复合的状态下,结构的承载性能,并将得到的结果与理想状态下的结构作对比。结论结果表明,无论是初始几何缺陷,还是初始应力缺陷,都会降低结构的承载极限。  相似文献   

6.
该文章对某金属材料制成的圆筒形试件进行水下近距爆炸试验,得到了水下近距爆炸条件下材料的动态断裂应变,结合能量方法,给出了水下近距爆炸时材料的动态屈服强度,并和静态拉伸试验及霍普金森拉杆试验(SHTB)结果对比,比较了屈服强度、极限拉伸应变和能量吸收率等参数,并探讨了SHTB试验所得失效判据在水下爆炸对某金属材料制成的圆筒形试件进行水下近距爆炸试验,得到水下近距爆炸条件下材料的动态断裂应变,结合能量方法,给出水下近距爆炸时材料的动态屈服强度,并和静态拉伸试验及霍普金森拉杆试验(SHTB)结果对比,比较屈服强度、极限拉伸应变和能量吸收率等参数,并探讨SHTB试验所得失效判据在水下爆炸条件下的适用性。对比材料失效判据常规研究方法和水下爆炸实际效果,对于船体及其模型的结构抗爆设计和评估具有参考价值。条件下的适用性。该文章创新的对比了材料失效判据常规研究方法和水下爆炸实际效果,对于船体及其模型的结构抗爆设计和评估具有参考价值。  相似文献   

7.
目的探明受内压薄圆环极限承压能力。方法首次以MY(平均屈服)准则对受内压薄圆环进行弹塑性分析,克服Mises准则数学求解的困难性,导出塑性区内的应力场,并获得塑性极限压力的解析解。此外,还给出了弹塑性临界半径与内压之间的依赖关系,并分析了二者间的变化规律。结果塑性极限压力的解析解表明,塑性极限压力是材料屈服强度、半径比值的函数;与已有的Tresca、TSS准则获得的结果比较表明,Tresca准则给出极限压力下限,TSS屈服准则给出极限压力上限,MY准则给出极限压力居于两者之间,可作为Mises解的替代。结论文中结果对于充分发挥材料性能,进而对薄圆环的设计、选材以及安全评估具有实际工程意义。  相似文献   

8.
首次将GM(几何中线)屈服准则应用于内压薄壁圆筒和球壳的塑性极限分析,获得了解析解.薄壁筒和球壳极限载荷均为壁厚、内径及材料屈服极限的函数.屈服极限越高、壁厚越大,内径越小,极限载荷越大.与Mises准则、双剪应力准则(TSS)和Tresca准则相比,GM准则解居于TSS和Tresca解之间且靠近Mises解,恰好对应误差三角形中线.按GM准则计算的极限载荷随厚径比的增加而线性增加.  相似文献   

9.
基于三剪统一强度准则和弹脆塑性软化模型,考虑材料的脆性软化和中间主应力效应,推导了双层组合厚壁圆筒弹脆塑性极限内压统一解,探讨了粘聚力、内摩擦角、半径比、强度理论参数和中间主应力系数的影响特性,克服了以往基于Tresca屈服准则、Mises屈服准则或双剪强度理论的理想弹塑性解的不足。研究结果表明:中间主应力、材料模型和脆性软化对厚壁圆筒的极限内压均有显著影响。该文所得统一解具有广泛的适用性和理论意义,不但可退化为现有公式,而且还能得到系列化的新解答,对组合厚壁圆筒的设计及工程应用有重要参考价值。  相似文献   

10.
吕文高  何政 《工程力学》2022,39(5):145-158
提出采用塑性极限分析法研究竖向荷载作用下大跨飘浮体系斜拉桥的极限承载力和失效模式。基于塑性极限分析的相关假定并结合基本机构证明了该方法应用于斜拉桥失效分析的可行性,结合飘浮体系单塔斜拉桥推导了极限承载力计算公式并分析对应的失效模式,通过优化方法-内点法获得斜拉桥塑性极限荷载及其对应失效模式,并与OpenSEES有限元分析结果进行了对比分析。结果表明:竖向荷载作用下,主梁在拉索屈服强度较小时为整体性破坏,反之则为局部性破坏;相比拉索而言,主梁屈服强度对斜拉桥破坏的影响则正相反;拉索锈蚀在降低斜拉桥极限载荷系数的同时也改变其倒塌失效模式;相比于有限元法,塑性极限分析法简便且易操作,可用于研究竖向荷载作用下飘浮体系斜拉桥的极限承载能力与失效模式,且能够快速有效评估结构参数变化对其失效行为的影响。  相似文献   

11.
This paper presents the development of a constitutive model able to accurately represent the full non-linear mechanical response of polymer-matrix fibre-reinforced composites with unidirectional (UD) plies under quasi-static loading. This is achieved by utilising an elasto-plastic modelling framework. The model captures key features that are often neglected in constitutive modelling of UD composites, such as the effect of hydrostatic pressure on both the elastic and non-elastic material response, the effect of multiaxial loading and dependence of the yield stress on the applied pressure.The constitutive model includes a novel yield function which accurately represents the yielding of the matrix within a unidirectional fibre-reinforced composite by removing the dependence on the stress in the fibre direction. A non-associative flow rule is used to capture the pressure sensitivity of the material. The experimentally observed translation of subsequent yield surfaces is modelled using a non-linear kinematic hardening rule. Furthermore, evolution laws are proposed for the non-linear hardening that relate to the applied hydrostatic pressure.Multiaxial test data is used to show that the model is able to predict the non-linear response under complex loading combinations, given only the experimental response from two uniaxial tests.  相似文献   

12.
在高体积含量颗粒增强复合材料细观弹性分析的基础上, 引入了细观塑性和细观损伤模型: 基体用服从Von Mises 屈服准则的理想弹塑性材料模拟, 用沿圆柱形基体轴线方向的平均应力(即对称面上的应力) 来判断基体的屈服, 并将基体的塑性部分简化为圆柱状轴对称区域。建立了基体和颗粒/ 基体界面统一的损伤准则, 该准则同时考虑了最大应变和三轴应力的影响, 通过对细观塑性和细观损伤在空间取向上的平均, 建立了材料宏观模量的折减法则。用该细观力学模型, 数值模拟了一种实际金属基复合材料的强度实验, 理论模型与实验结果吻合。  相似文献   

13.
Extensively experimental evidences have shown that the yielding behaviors for many isotropic materials exhibit both the pressure and stress-state dependence. The strength-differential in tension and compression results not only from the hydrostatic stress, but also from the loading type. Different materials often demonstrate different yielding features in stress space even though they have the same ratio of compression yield-stress to tension yield-stress. Bases on a physical hypothesis introduced herein, a yield criterion is proposed to fulfill the experimental observations. The yield criterion can be represented finally with three independent invariants of the stress tensor and the deviatoric stress tensor. The yield criterion can well predict the yielding behavior arising from the yielding mechanism of the multiple-factor dependence. The yielding analysis with the effect of the hydrostatic stress does not have a limit when regardless of the strength-differential in tension and compression. The yield criterion assures the convexity in a wider range of material properties so that it can be used as the plastic potential in the implementation of predicting the subsequent yield surface. The yield criterion reveals a clearly transforming procedure with respect to its simplified form when applied to different materials from a general compressive isotropic material to an ideal incompressive isotropic material, back to the Mises’s criterion. Divers experiments on metallic and polymeric materials are compared. The results show that the new yield criterion is in fairly good agreement with all referred experiments.  相似文献   

14.
The industrial importance of cold extrusion is now well known. Unfortunately, the productivity of the process is restricted by the manifestation of a specific defect: the central burst, which is closely linked to ductility and to a depressive stress state in the core of material. An accurate knowledge of these facts is therefore necessary to the extension of the process. In this paper, we develop a slip line field model in order to calculate exactly the hydrostatic pressure on the axis of the system. Its peculiarity is that it can be associated with a mechanical test of material ductility. This method is developed for axisymmetric extrusion through conical dies, with a perfectly plastic material, obeying Tresca's yield criterion with its associated flow rule and with the Haar-Kàrmàn hypothesis. We assume that the pressure has a linear distribution along the die, which makes it possible to construct the slip line field. We then derive the velocity field, and determine by trial and error the pressure gradient along the die so that the velocity field satisfies all the boundary conditions. We apply this method to several extrusion ratios and die-angles; we compute the stress field in the deformed regions, obtaining an upper-bound for the extrusion pressure and a value for the hydrostatic pressure on the axis. Comparisons with experimental results show quite a good agreement between theoretical and experimental values of the extrusion pressure. The method will enable us in a future work to introduce friction along the die, metal work hardening and different profiles of the die.  相似文献   

15.
A series of finite element simulations of frictionless contact deformations between a sinusoidal asperity and a rigid flat are presented. Explicit expressions of critical variables at plastic inception including interference, contact radius, depth of first yielding, and pressures are obtained from curve fitting of simulation results as a function of material and geometrical parameters. It is found Hertz solution is not applicable to the critical contact variables at plastic inception for sinusoidal contact, although contact responses of initially plastic deformation follow the same trend as that of purely elastic deformation. The contact pressure at incipient plasticity, which is defined as yield strength, is dependent on Poisson’s ratio, yield stress, and geometrical parameters, but independent of elastic modulus. It is not yield stress, but yield strength that correlates with indentation hardness. The results yield the insight into the specification of material properties to realize elastic contact. A larger ratio of yield stress to elastic modulus is beneficial to sustain a larger load before plastic deformation.  相似文献   

16.
Cold expansion of fastener holes is a common way of improving fatigue performance of airframes. Among the several techniques applicable, the split-sleeve method is the most accepted in creating beneficial compressive residual stresses around expanded holes. In the present work, residual stresses at expanded holes in several types of aluminium plates produced by two different techniques, split-sleeve and roller burnishing, have been evaluated by the novel destructive Sachs method and then compared. It was found that stress distribution particularly at the vicinity of the hole was sensitive to the method of expansion and plate thickness, due to differing characteristics of the plastic material flow. Thus, secondary reverse yielding after cold expansion found to reduce residual hoop stresses at the edge of the hole, and excessive expansion above a limit, was thought to increase reverse yielding. S–N data revealed that no benefit was gained from expanding beyond this limit. It was suggested that the reduction in the number of cycles to crack initiation or more often to crack growth was due to increased reverse yielding at the vicinity of the expanded hole.  相似文献   

17.
To make constitutive modeling of materials more approaching reality, a new theory is proposed, in which a corresponding constitutive model can be constructed and characterized experimentally via two steps, one relates to the characterization of yielding behavior of material, and the second relates to the characterization of plastic flow of material deformation. The constitutive model involves two functions, yield function and plastic potential. A relationship between two functions is suggested, therefore, a corresponding plastic potential can be easily created after we have an appropriate yield function. To consider the non-isotropic hardening feature of strength differential in the constitutive model, the concept of equivalent hardening state is introduced, and then, multi-experimental flow stresses can be addressed in the model. When pressure sensitive materials are taken as an example in discussions, the Drucker–Prager yield function is employed to express the yielding behavior of material and a differently experimental characterization of the model is created as the corresponding plastic potential to describe the feature of plastic flow of material. This simple constitutive model can reproduce three sets of experimental results; including two flow-stresses and the volumetric plastic strain. The constitutive model can also well predict stress–strain relations with different pressures loaded on the material. Study shows that the feature of plastic flow is not that sensitive to the pressure loaded on the material when the yielding stress is.  相似文献   

18.
A nonlinear mathematical programming approach together with the finite element method and homogenization technique is developed to implement kinematic limit analysis for a microstructure and the macroscopic strength of a composite with anisotropic constituents can be directly calculated. By means of the homogenization theory, the classical kinematic theorem of limit analysis is generalized to incorporate the microstructure - Representative Volume Element (RVE) chosen from a periodic composite/heterogeneous material. Then, using an associated plastic flow rule, a general yield function is directly introduced into limit analysis and a purely-kinematic formulation is obtained. Based on the mathematical programming technique, the finite element model of microstructure is finally formulated as a nonlinear programming problem subject to only one equality constraint, which is solved by a direct iterative algorithm. The calculation is entirely based on a purely-kinematical velocity field without calculation of stress fields. Meanwhile, only one equality constraint is introduced into the nonlinear programming problem. So the computational cost is very modest. Both anisotropy and pressure-dependence of material yielding behavior are considered in the general form of kinematic limit analysis. The developed method provides a direct approach for determining the macroscopic strength domain of anisotropic composites and can serve as a powerful tool for microstructure design of composites.  相似文献   

19.
The authors present a procedure of estimation of the limiting state of a multilayer high-pressure chamber whose inner layer is made of materials that differ in plasticity. The problem has been solved in the Lamé–Gadolin–Belyaev formulation using the Pisarenko–Lebedev strength criterion. It has been found that to the limiting state represented by the onset of plastic yielding there corresponds a pressure which can be three and more times higher than the tensile yield limit of material of the inner layer. The use of steels in the inner layer is shown to offer considerable advantages over carbides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号