首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 398 毫秒
1.
基于连续损伤力学,建立了同时考虑复合材料剪切非线性效应和损伤累积导致材料属性退化的三维损伤本构模型。模型能够区分纤维损伤、基体损伤和分层损伤不同的失效模式,并定义了相应损伤模式的损伤变量。复合材料层合板层内纤维初始损伤采用最大应力准则判定,基体初始损伤采用三维Puck准则中的基体失效准则判定,分层初始损伤采用三维Hou准则中的分层破坏准则判定,为了计算Puck失效理论中的基体失效断裂面角度,本文提出了分区抛物线法,通过Matlab软件编写计算程序并进行分析。结果表明,与Puck遍历法和分区黄金分割法对比,本文提出的分区抛物线法有效地降低了求解断裂面角度的计算次数,提高了计算效率和计算精度。推导了本构模型的应变驱动显式积分算法以更新应力和解答相关的状态变量,开发了包含数值积分算法的用户自定义子程序VUMAT,并嵌于有限元程序Abaqus v6.14中。通过对力学行为展现显著非线性效应的AS4碳纤维/3501-6环氧树脂复合材料层合板进行渐进失效分析,验证了本文提出的材料本构模型的有效性。结果显示,已提出的模型能够较准确地预测此类复合材料层合板的力学行为及其失效强度,为复合材料构件及其结构设计提供一种有效的分析方法。   相似文献   

2.
A review is given of the mechanics of cutting, ranging from the slicing of thin floppy offcuts (where there is negligible elasticity and no permanent deformation of the offcut) to the machining of ductile metals (where there is severe permanent distortion of the offcut/chip). Materials scientists employ the former conditions to determine the fracture toughness of ‘soft’ solids such as biological materials and foodstuffs. In contrast, traditional analyses of metalcutting are based on plasticity and friction only, and do not incorporate toughness. The machining theories are inadequate in a number of ways but a recent paper has shown that when ductile work of fracture is included many, if not all, of the shortcomings are removed. Support for the new analysis is given by examination of FEM simulations of metalcutting which reveal that a ‘separation criterion’ has to be employed at the tool tip. Some consideration shows that the separation criteria are versions of void-initiation-growth-and-coalescence models employed in ductile fracture mechanics. The new analysis shows that cutting forces for ductile materials depend upon the fracture toughness as well as plasticity and friction, and reveals a simple way of determining both toughness and flow stress from cutting experiments. Examples are given for a wide range of materials including metals, polymers and wood, and comparison is made with the same properties independently determined using conventional testpieces. Because cutting can be steady state, a new way is presented for simultaneously measuring toughness and flow stress at controlled speeds and strain rates.  相似文献   

3.
A. Cardoni  M. Lucas 《Strain》2005,41(1):11-18
Abstract:  Ultrasonic cutting is an established technology in the cutting of food products. As the high-cost components of an ultrasonic cutting system are the ultrasonic generator and transducer, some designs have concentrated on running several cutting blades from a single power source. This strategy is undoubtedly economic, but problems remain with reliability. Blade failure during cutting is a common problem in ultrasonic systems and therefore strategies are proposed to reduce stress levels at the failure locations. Many alternative blade profiles are investigated using finite element (FE) models, which are validated by experimental modal analysis (EMA) using a 3D laser Doppler vibrometer (LDV). Combining three strategies can reduce the stress level at the failure location on cutting blades. The first investigates the blade profile at the failure location with the aim of incorporating sufficient gain at reduced stress levels. The second concentrates on detuning the block horn and blades in order to move the longitudinal node away from the highest stressed section of the blade. Finally, a redesign of the block horn is studied in order to eliminate the effects of blade flexural vibrations in the longitudinal cutting mode.  相似文献   

4.
The fracture and fatigue of sintered diamond compact   总被引:3,自引:0,他引:3  
The fracture stress of the sintered diamond compact is reduced under cyclic loading. The measurements were made using a dynamic test machine, with a diamond compact cutter impacting onto cemented tungsten carbide. The fracture mode under the present experimental conditions is brittle shear fracture. Crack growth is believed to be promoted by a relatively small tensile stress component at the tip of the crack due to the very large applied shear stresses. A possible failure mechanism is proposed based on examination of SEM micrographs of the damaged area. The results obtained in the present test indicate that the asymptotic value of the failure load corresponding to an infinite number of cycles is far above the reported value of force for cutting rocks under similar geometric conditions.  相似文献   

5.
In the course of biological evolution, plant stems have evolved mechanical properties and an internal structure that makes them resistant to various types of failure. The mechanisms involved during damage development and failure in bending are complex and incompletely understood. The work presented builds on a theoretical framework outlined by Ennos and van Casteren, who applied engineering mechanics theory to explain why different woody stems fail in different ways. Our work has extended this approach, applying it to a detailed analysis of one particular species: Fuchsia magellanica var. gracilis. When subjected to three-point bending, stems of this species exhibited one of two failure mechanisms: a plastic hinge or a greenstick fracture. We developed a predictive model using a computer simulation and a mathematical analysis using the theory of plastic bending. Required material properties were obtained from tests, the literature and imaging techniques. We found that greenstick fractures are more likely to occur in more lignified stems with a higher density. We discovered a new failure mode: an internal crack caused by tensile transverse stress. This work helps in understanding how plants have evolved their bending resistance and may assist in the creation of novel engineering structures inspired by these principles.  相似文献   

6.
Octet-truss是一种兼具轻质构型和多功能特点的三维点阵结构,为分析和验证其抗压缩性能,提出了一种采用连续纤维制备Octet-truss点阵夹芯板的方法,该方法设计了一套Octet-truss结构成型工装,采用该工装,运用空间编织法及树脂固化工艺制备了不同类型的玻璃纤维和凯夫拉纤维试件,并对试件进行了轴压测试,实验结果表明该方法制备的不同材质、不同尺寸的夹芯板力学性能稳定,验证了其制备工艺的可靠性,结合实验过程与SEM图像分析了玻璃纤维试件主要失效模式为节点附近纤维杆因纤维微屈曲出现断裂,凯夫拉纤维试件主要失效模式为纤维杆欧拉屈曲而出现弯曲破坏。   相似文献   

7.
Resistance to puncture is a critical property for several applications, in particular for elastomer materials used in protective clothing. To evaluate the puncture resistance of membranes, some methods have been proposed as standard tests. However, the rounded puncture probes used in these tests are very different from real pointed objects like medical needles, and may not measure the level of material resistance that corresponds to them. In fact, puncture by medical needles is shown to proceed gradually as the needle cuts into the membrane. This behavior is highly different from puncture by rounded probes which occurs suddenly when the strain at the probe tip reaches the failure value. In addition, maximum force values are observed to be much smaller with medical needles. A method has been developed based on the change in strain energy with the puncture depth to evaluate the fracture energy associated to puncture. The results show that the phenomenon of puncture by medical needles involves contributions both from friction and fracture energy, in a similar way as for cutting. A lubricant was tentatively used to reduce the friction contribution for the computation of the material fracture energy.  相似文献   

8.
A new and simple method to study the change in crack resistance during the process of crack growth in ceramic materials has been developed. The method is based on using the chevron-notched short-bar test which is generally accepted as a convenient method for measuring fracture toughness. The simple modification described here allows one to measure fracture toughness using the assumption that fracture toughness changes in the process of crack growth (presence of crack resistance curve, or R-curve). This method presents many advantages, especially the long stable crack growth under mode I fracture specimen and plane strain, small specimen size and no need of pre-cracking for measuring R-curve behaviour in ceramic materials.  相似文献   

9.
为研究镐型截齿在截割煤岩过程中的截割机理,建立镐型截齿外轮廓的数学模型,基于弹性力学、塑性力学和断裂力学等理论,提出了煤岩截齿截割力作用下发生弹-塑-断裂失稳理论模型,以此来描述截齿截割煤岩机理,并依据理论模型分别推导出煤岩在弹性变形、塑性变形和断裂失稳状态下截齿截割力以及煤岩应力表达式。最后采用自主搭建实验设备进行不同截割倾角的镐型截齿截割煤岩实验,实验结果表明:煤岩在截齿截割力作用过程中,随着截齿截割深度的增加,截齿与煤岩的接触面积逐步增大,煤岩存在弹性变形阶段、塑性变形阶段以及断裂失稳阶段并与理论模型相符;截割倾角为90°、75°、60°时,截齿截割阻力理论值与实验值的均方根误差分别为0.082 kN、0.199 kN、0.204 kN,理论值与实验值相差较小,验证理论模型的正确性。  相似文献   

10.
The results of testing in three-point bending of aramid fibre-reinforced epoxy composites are described. This loading mode has been chosen in order to increase the variety of failure modes and of fracture mechanisms. The main failure modes observed are tensile and delamination, with a transition at a fibre volume fraction of about 46%. This mode transition is detectable by monitoring various mechanical properties and acoustic emission data against the fibre volume fraction. The tensile mode comprises a fracture mechanism of fibre splitting and pull-out and the delamination comprises fibre bending, tearing off of fibre skin and shearing of individual filaments. Other effects such as the shifting of the neutral axis and the compressive failure at the compression side are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号