首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
Bi2Te3基热电材料是室温下性能最好的热电材料。传统块体Bi2Te。基热电材料的热电性能不高,而纳米Bi2Tes基热电材料可以实现电、声输运特性的协同控制,从而提高材料的热电性能。介绍了几种纳米Bi2Te3。基热电材料不同的湿化学制备方法,比较了各种方法的优缺点,并展望了其发展方向。  相似文献   

2.
稀土元素对Bi2Te3基材料热电性能的影响一直是Bi2Te3基热电材料研究的热点。本文研究了不同Gd掺杂量Bi2Te3基热电材料的热压烧结工艺参数,运用XRD,SEM方法对材料的物相成分和形貌进行了表征,研究了20MPa下不同Gd掺杂对Bi2Te3基材料的载流子浓度、电导率、Seebeck系数的影响。研究结果表明,Gd掺杂没有明显改变Bi2Te3基材料的晶体结构,适量的Gd掺杂有利于减小载流子浓度、提高Bi2Te3基材料的热电性能。  相似文献   

3.
碲化铋-碳纤维水泥基材料的制备及热电性能   总被引:1,自引:0,他引:1  
采用混掺和涂层两种方式制备碲化铋(Bi2Te3)-碳纤维水泥基材料,研究了Bi2Te3掺量和掺加方式对水泥基材料热电性能的影响,并建立了涂层掺加方式下水泥基材料的热电模型。结果表明,混掺Bi2Te3的碳纤维水泥基材料表现出极化效应,随着养护龄期的延长,极化效应减弱;掺加Bi2Te3可以显著改善碳纤维水泥基材料的热电性能,以Bi2Te3作为涂层的水泥基材料比混掺具有更好的热电性能;热电模型分别计算Bi2Te3涂层和碳纤维水泥薄片的Seebeck系数,表明Bi2Te3涂层具有较高的Seebeck系数,从而提高整体水泥基材料的热电性能。  相似文献   

4.
Bi2Te3基热电材料由于在微电子、光电子等高技术领域具有潜在的应用前景,从而得到了人们的广泛关注.低维Bi2Te3基热电材料由于具有特殊的量子限制效应,已成为提高热电性能的有效途径.近年来,研究者非常重视Bi2Te3基热电薄膜的制备及性能研究,并做了大量相关的研究工作,许多制备方法也相继出现,并获得了高质量的Bi2Te3基热电薄膜.  相似文献   

5.
热电材料的低维化可以改善材料电输运与热传输的矛盾,特别是一维纳米热电材料明显的晶体各向异性和强烈的量子禁闭效应,可大幅度提高材料的热电优值和热电转换效率。Bi2Te3是制造低温热电材料的最常用材料,在温差发电和半导体制冷方面具有广阔的商业应用前景。以一维Bi2Te3基纳米热电材料的制备技术为评述线索,重点论述一维Bi2Te3基纳米热电材料形貌参数(包括直径、长径比)、晶面取向等微观结构的调控方法、生长机理以及显微结构对热电性能的影响规律。指出发展新的一维Bi2Te3基纳米热电材料结构控制方法,研究一维纳米热电材料的定向排布及组装技术,从更深层次揭示一维结构与热电性能的关系,以及开发一维Bi2Te3基纳米热电材料在各领域的实际应用是未来研究的发展方向。  相似文献   

6.
纳米结构Bi2Te3基热电材料的溶剂热合成   总被引:3,自引:0,他引:3  
本文评述了近年来溶剂热合成纳米结构Bi2Te3的研究进展,重点讨论了合成过程中的化学反应和晶体生长机制,特别是Bi2Te3纳米管的合成、形成机制和组织结构特征.介绍了含纳米结构Bi2Te3的Bi2Te3基同质纳米复合结构热电材料,其热电优值ZT达到1.25,远高于基体材料,也超过目前的块状先进Bi2Te3基热电材料.  相似文献   

7.
采用水热法制备Bi2Te3/Sb2Te3纳米粉体并热压制备块体热电材料.用X射线衍射分析产物的相结构和成分,扫描显微镜与透射电镜观察产物的形貌.测量试样从室温到700K的塞贝克系数与电导率.实验结果表明,使用水热法制备了Bi2Te3与Sb2Te3纳米粉体,经热压后部分氧化.热压温度对于块体试样热电性能影响显著.  相似文献   

8.
阐述了Bi2Te3热电材料的基本特性,评述了Se,TeL,SiC,RE(La,Ce等)的掺杂对BiTe材料热电性能的影响,以及国内外掺杂Bi-Te基热电材料的研究进展.介绍了Bi-Te基合金的制备技术的发展.最后指出通过材料的结构优化、组分调整及制备技术的改进,可以进一步提高材料的热电性能,得到理想的热电优值.  相似文献   

9.
热电材料微观组织结构的纳米化有利于增强对声子的散射,降低材料热导率,从而提高热电材料的性能.采用水热合成方法制备了包含纳米管、纳米线等形态的Bi2Te3基纳米结构粉末.采用真空热压方法制备了含纳米结构粉末的Bi2Te3基纳米复合热电材料.实验结果表明,纳米复合热电材料具有高电导、低热导的优良性能特征.最大无量纲热电优值达到1.3左右,比同类区熔材料提高15%左右.模拟计算表明,用纳米复合材料制备的温差电池的单位面积最大输出功率为1100W·m-2,热电转换效率在8%以上,在余热发电应用领域具有实际应用经济价值.  相似文献   

10.
研究了用低温湿化学法和水热法制备纳米级的Bi2Te3和sb挪e3颗粒,并通过透射电镜观察其微观形貌。Bi2Te3粉末的微观形貌为直径在30-50n之间的片状小颗粒,而sb2Te3颗粒的微观形貌为薄带状,直径约为70nm,长度则为从150-300nm不等,并对其晶体的形核和长大机理进行了讨论。认为,纳米小颗粒状的Bi2Te3晶体可能是通过“表面形核和侧向生长”形成的产物,而薄带状的sb2Te3晶体可能是在Te块解体形成的条带状碎屑基础上形成的。用放电等离子烧结法(spark plasma sintering)制备不同比例的Bi2Te3/Sb2Te3块状复合材料,测量并比较了其热电性能。通过改变Bi2Te3的量,可以提高复合材料的电性能。成分不同的层片间的散射,能更有效地降低块体材料的热导率。在500K的温度下,Bi2Te3和sb2Te3以摩尔比为1:1复合烧结的试样的热导率低达0.7W/(m·K)。进一步优化Bi2Te3和sb2Te3的复合比例,其热电性能可能会有进一步的提高。  相似文献   

11.
Son JS  Choi MK  Han MK  Park K  Kim JY  Lim SJ  Oh M  Kuk Y  Park C  Kim SJ  Hyeon T 《Nano letters》2012,12(2):640-647
We herein report on the large-scale synthesis of ultrathin Bi(2)Te(3) nanoplates and subsequent spark plasma sintering to fabricate n-type nanostructured bulk thermoelectric materials. Bi(2)Te(3) nanoplates were synthesized by the reaction between bismuth thiolate and tri-n-octylphosphine telluride in oleylamine. The thickness of the nanoplates was ~1 nm, which corresponds to a single layer in Bi(2)Te(3) crystals. Bi(2)Te(3) nanostructured bulk materials were prepared by sintering of surfactant-removed Bi(2)Te(3) nanoplates using spark plasma sintering. We found that the grain size and density were strongly dependent on the sintering temperature, and we investigated the effect of the sintering temperature on the thermoelectric properties of the Bi(2)Te(3) nanostructured bulk materials. The electrical conductivities increased with an increase in the sintering temperature, owing to the decreased interface density arising from the grain growth and densification. The Seebeck coefficients roughly decreased with an increase in the sintering temperature. Interestingly, the electron concentrations and mobilities strongly depended on the sintering temperature, suggesting the potential barrier scattering at interfaces and the doping effect of defects and organic residues. The thermal conductivities also increased with an increase in the sintering temperature because of grain growth and densification. The maximum thermoelectric figure-of-merit, ZT, is 0.62 at 400 K, which is one of the highest among the reported values of n-type nanostructured materials based on chemically synthesized nanoparticles. This increase in ZT shows the possibility of the preparation of highly efficient thermoelectric materials by chemical synthesis.  相似文献   

12.
In this study, bismuth telluride (Bi2Te3)-based nanopowders with particle size ranging from 100 to 300 nm are prepared by high-energy ball milling. Then, the prepared nanopowders are homogeneously mixed with organic binders to form a paste; this paste is used as the raw material to prepare thick-film thermoelectric modules. The thick film prepared by screen printing followed by hot pressing of p-type pastes show reproducible thermoelectric properties, exhibiting an electrical resistivity of 2.0 m Omega cm and a Seebeck coefficient of 298 muVK-1. The prepared p-type Bi2Te3 thick film has a high power factor because its Seebeck coefficient is significantly higher than that of Bi2Te3 based-bulk materials. These results indicate that a thick film prepared from bismuth telluride nanopowders has potential for use as high-performance thermoelectric modules in practical applications such as power generation and cooling system in electronic devices.  相似文献   

13.
Zhang G  Kirk B  Jauregui LA  Yang H  Xu X  Chen YP  Wu Y 《Nano letters》2012,12(1):56-60
A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based bulk materials, our nanowire devices exhibit an enhanced ZT of 0.96 peaked at 380 K due to a significant reduction of thermal conductivity derived from phonon scattering at the nanoscale interfaces in the bulk pellets, which corresponds to a 13% enhancement compared to that of the best n-type commercial Bi(2)Te(2.7)Se(0.3) single crystals (~0.85) and is comparable to the best reported result of n-type Bi(2)Te(2.7)Se(0.3) sample (ZT = 1.04) fabricated by the hot pressing of ball-milled powder. The uniformity and high yield of the nanowires provide a promising route to make significant contributions to the manufacture of nanotechnology-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliable and a reproducible way.  相似文献   

14.
电化学制备Bi2Te3纳米线用于微型温差发电器   总被引:1,自引:0,他引:1  
借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM,XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型Bi2Te3纳米线材料的Seebeck系数经过测量分别为260μV/K和-188μV/K(307K),比同类的块状温差电材料性能高.同时研究了沉积电位对氧化铝模板中纳米孔的填充率的影响,并对纳米线阵列的电阻进行了测量.尝试了利用n型和P型Bi2Te3纳米线阵列制备一种新型的微型温差发电器.  相似文献   

15.
采用水热法合成Bi_2Te_3粉体,将炭黑(CB)与其掺杂制备不同比例的碲化铋/炭黑(Bi_2Te_3/CB)复合材料,研究复合材料的热电性能。同时采用TGA、SEM、XRD等分析方法表征Bi_2Te_3/CB复合材料的结构,探究微观结构与热电性能的关系。研究发现:室温下,CB的引入使Bi_2Te_3/CB复合材料的热导率大大降低(0.5957 W/(m·K)降到0.0888 W/(m·K));随着Bi_2Te_3含量的增加,复合材料的电导率、热导率均增大,Seebeck系数先增加后降低;当Bi_2Te_3含量为88.9%时,在558℃烧结10min所得的Bi_2Te_3/CB复合材料室温下热电优值ZT最大(ZT=0.21)。虽然ZT值未能达到应用价值,但是CB的添加为改善Bi_2Te_3材料的热电性能,尤其在降低材料的热导率方面,提供了新方法和新思路。  相似文献   

16.
李硕  郭涛  姚雅萱  任玲玲 《计量学报》2021,42(8):1006-1011
热电材料是一类可以将热能和电能直接相互转化的新型功能材料。塞贝克系数作为评价热电材料性能的重要参数,其准确测量尤为关键。基于准确测量方法,建立了塞贝克系数的溯源路径,研究了塞贝克系数测量仪器的溯源性,验证了测量方法的准确性,以P型碲化铋Bi2Te3块体热电材料作为测量对象进行了测量不确定度评定,其相对扩展不确定度为0.46%~2.52%(k=2)。  相似文献   

17.
Research on thermoelectric (TE) materials has been focused on their transport properties in order to maximize their overall performance. Mechanical properties, which are crucial for system reliability, are often overlooked. The recent development of a new class of high-performance, low-dimension thermoelectric materials calls for a better understanding of their mechanical behavior to achieve the desired system reliability. In the present study we investigate the mechanical behavior of nanostructure bulk TE material p-type Bi(x)Sb(2-x)Te(3) by means of nanoindentation and 3D finite element analysis. The Young's modulus of the material was estimated by the Oliver-Pharr (OP) method and by means of numerically assisted nanoindentation analysis yielding comparable values about 40 GPa. Enhanced hardness and yield strength can be predicted for this nanostructured material. Microstructure is studied and correlation with mechanical properties is discussed.  相似文献   

18.
We report on the enhanced thermoelectric properties of selenium (Se) doped bismuth telluride (Bi(2)Te(3-x)Se(x)) nanoplatelet (NP) composites synthesized by the polyol method. Variation of the Se composition within NPs is demonstrated by X-ray diffraction and Raman spectroscopy. While the calculated lattice parameters closely follow the Vegard's law, a discontinuity in the shifting of the high frequency (E(g)(2) and A(1g)(2)) phonon modes illustrates a two mode behavior for Bi(2)Te(3-x)Se(x) NPs. The electrical resistivity (ρ) of spark plasma sintered pellet composites shows metallic conduction for pure Bi(2)Te(3) NP composites and semiconducting behavior for intermediate Se compositions. The thermal conductivity (κ) for all NP composites is much smaller than the bulk values and is dominated by microstructural grain boundary scattering. With temperature dependent electrical and thermal transport measurements, we show that both the thermoelectric power S (-259 μV/K) and the figure of merit ZT (0.54) are enhanced by nearly a factor of 4 for SPS pellets of Bi(2)Te(2.7)Se(0.3) in comparison to Bi(2)Te(3) NP composites. Tentatively, such an enhancement of the thermoelectric performance in nanoplatelet composites is attributed to the energy filtering of low energy electrons by abundant grain boundaries in aligned nanocomposites.  相似文献   

19.
Extraction of TeO2 from the byproduct solution generated during the copper smelting process and application of the extracted TeO2 to the preparation of Bi–Te alloy thermoelectric materials were performed via a wet chemical processes. In the wet chemical process, powder purifying steps were optimized by adjusting the pH of NaOH solvent to dissolve the initially extracted Te compounds and by washing the finally extracted powders. TeO2 powders used in preparing the Bi–Te alloy thermoelectric materials could be successfully extracted from the byproduct solution by the optimized wet chemical process. Powders synthesized by applying the commercial and the extracted TeO2 powders to the wet chemical process showed identical crystal structures of Bi2Te3 and a mean particle size of ~3 μm. Thus, it is believed that the recycled TeO2 powders will be very useful in the preparation of Bi–Te alloy thermoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号