首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
杨柳  何岗  洪建和  何明中 《材料导报》2011,25(19):59-63
LiFePO4以其价格低廉、稳定性好、循环性能好和无毒等优点,有望成为下一代锂离子电池的正极材料,但是LiFePO4电导率低和锂离子扩散系数小限制了它的实用化。碳包覆作为一种非常有效的导电改性方法,受到极大关注。在碳包覆中采用不同的碳源和不同的碳包覆方法,对LiFePO4的电化学性能影响不同。结合国内外的研究现状,综述了LiFePO4/C复合材料制备过程中不同碳源以及不同的碳包覆方法对其电化学性能影响的研究进展。  相似文献   

2.
不同碳源对LiFePO4/C复合材料性能的影响   总被引:4,自引:0,他引:4  
采用机械液相活化法与高温固相法相结合制备了锂离子电池正极材料LiFePO4和LiFePO4/C.考察了蔗糖、柠檬酸、葡萄糖、酒石酸等不同碳源对材料性能的影响,并采用XRD、 SEM和恒电流充放电测试等方法对材料的结构、表面形貌及电化学性能进行了研究,利用Raman光谱和TEM分析材料中碳的存在状态.结果表明,得到的样品结构均为橄榄石型,碳源的加入能有效地减小材料的颗粒尺寸,并且材料的电导率比纯LiFePO4的电导率提高了5个数量级.LiFePO4/C样品的表面包覆层均为非晶碳,以柠檬酸为碳源合成的LiFePO4/C材料,具有较小的颗粒尺寸,均匀多孔的表面碳包覆层和最佳的电化学性能.在0.1C下第3次的放电比容量达141.0mAh/g,循环10次后容量无衰减.  相似文献   

3.
采用葡萄糖、环氧树脂、酚醛树脂为碳源制备了LiFePO4/C复合材料。利用X射线衍射、扫描电镜等方法对复合材料进行研究。结果表明,葡萄糖获得了碳包覆复合材料,而环氧树脂、酚醛树脂则得到了碳芯结构复合材料。碳芯结构复合材料的电化学性能优于碳包覆复合材料,电流密度为15mA/g时,试样C、D的放电容量分别为165、167mAh/g;电流密度为600mA/g时,试样C、D的放电容量分别为139.4、145.5mAh/g,经过50循环后容量保持率分别高达99.2%、99.5%。  相似文献   

4.
新型碳热还原法制备LiFePO4/C复合材料及其性能研究   总被引:8,自引:0,他引:8  
以葡萄糖为碳源,采用一种新的碳热还原法制备LiFePO4/C正极材料.采用TG-DTA、XRD、TEM等手段对前驱体及产物进行了表征,研究了碳热还原的反应历程,测试了样品的电化学性能.结果表明,该碳热还原法可以降低煅烧温度.600℃烧结24h的样品在0.05C下首次放电容量达156mAh·g-1,在0.1、0.2、0.5、1C下首次放电容量分别为146、135、130、121mAh·g-1.该样品在1C下经过30次循环,容量还保持为119mAh·g-1,衰减仅为1.65%.  相似文献   

5.
用共沉淀法制备了球形NH4FePO4·H2O前驱体,再与Li2CO3和葡萄糖混合用固相焙烧法制备了LiFePO4/C正极材料.利用正交实验考察了焙烧温度、焙烧时间、球磨时间、x(Li):x(Fe)和葡萄糖用量等对材料首次放电比容量的影响,得到了最佳工艺条件.通过XRD、SEM、FTIR和恒流充放电测试仪等测试了材料的结构和电化学性能.所得材料在室温下电流密度为0.1、0.5和1C时首次放电比容量分别为147.6、136.7和122.3mAh/g,循环50次后容量分别为142.8、127.3和106.7mAh/g;在60℃下电流密度为0.5C时,其首次放电比容量为163.8mAh/g,循环性能良好.  相似文献   

6.
李杏恩  任丽  王芳芳  韩杨 《功能材料》2013,(19):2819-2824
以葡萄糖酸亚铁为碳源和部分铁源,采用固相法制备了LiFePO4/C复合正极材料。利用XRD和SEM对所得样品进行了结构与形貌表征。以LiFePO4/C作锂二次电池正极组装电池,用电化学工作站和充放电测试系统对样品进行电化学性能测试。当碳包覆量为4.75%,650℃烧结10h时所制备的LiFePO4/C复合材料在0.1、0.2和1C倍率下最高放电比容量分别为161.6、147.2和123.3mAh/g。1C倍率下经50次循环材料的放电比容量无衰减。实验结果表明,由于葡萄糖酸根和铁离子之间较强的化学键,阻止了葡萄糖酸根热解过程中在材料内部的不均匀扩散,其热解后在材料颗粒表面形成均匀导电碳层,并在颗粒之间形成丝状无定形碳,有效抑制了晶粒的生长,提高了活性物质利用率,形成了完整的导电网络,增强了材料的综合电化学性能。  相似文献   

7.
采用二步固相法制备了LiFePO4/Al/C复合正极材料.利用X射线衍射仪、扫描电镜和透射电镜表征样品的晶体结构、形貌、粒径和包覆状态,并研究了铝粉加入量对复合材料电化学性能的影响.结果表明,金属Al与LiFePO4发生了界面反应,生成多种副产物,并在LiFePO4的表面形成钝化膜.在LiFePO4颗粒的表面包覆有不规则形状的金属铝和1~2 nm的碳层.当铝粉加入量为3wt%时,LiFePO4/Al/C复合材料的电化学性能最佳,室温10C倍率下放电克容量为117.8 mAh/g;样品在20℃下,0.1C放电克容量为105.6 mAh/g,相对于常温的放电容量比率为73.8%.  相似文献   

8.
采用环氧树脂为碳源制备出碳芯结构LiFePO4/C复合材料.利用X射线衍射、扫描电镜、透射电镜和X光电子能谱等分别对复合材料的晶体结构、表面形貌及表面成分进行表征,采用恒电流充放电和电化学阻抗方法研究试样的电化学性能.实验结果表明:碳芯结构复合材料是由无定形碳线和纳米LiFePO4颗粒组成.碳芯结构LiFePO4/C复合材料在15mA/g的电流密度下,首次放电容量达到166mAh/g,当电流密度增加到750mA/g,放电容量高达131mAh/g,经过50次循环后,容量保持率高达99.2%.  相似文献   

9.
橄榄石型的LiFePO4材料是一种具有良好发展潜力的锂离子电池阴极材料。应用一种两步烧结的碳热还原方法制备出LiFePO4阴极材料,该法缩短了高温烧结阶段的时间,从而达到抑制晶粒长大的目的,并对LiFePO4进行原位碳包覆,制得LiFePO4/C复合阴极材料。对制得的材料进行0.1C恒电流充放电测试,首次放电容量为149.4mAh/g,首次放电效率可以达到93.5%。而用作对比的一步法烧结碳热还原样品在0.1C恒流充放电试验中首次容量只有99.1mAh/g,放电效率是81.4%,并对制备反应及充放电结果的机理进行了探讨。  相似文献   

10.
为了研究碳包覆对LiFePO4结构的影响,以柠檬酸为碳源,采用机械活化-高温固相法,合成了不同碳包覆量的LiFePO4/C复合正极材料.通过XRD、SEM、BET、HRTEM、选区电子衍射(SAED)、交流阻抗谱(ACI)和恒电流充放电等现代分析方法,全面研究了碳包覆量不同时,LiFePO4/C复合正极材料的结构、形貌和电化学性能,并对C包覆对结构影响的成因进行了分析.结果表明,柠檬酸高温分解后生成无定形碳非晶物质,在LiFePO4颗粒表面包覆形成一种网络结构,抑制了颗粒的生长;C包覆影响了晶体的生长方向和微观结构,LiFePO4/C的优势生长为[121]方向;交流阻抗分析表明包覆后锂离子扩散系数比未改性的LiFePO4提高了两个数量级,且各项阻抗值均降低,从而提高了材料的离子及电子电导性、放电性能和循环性能.  相似文献   

11.
以FePO4·xH2O为铁源与Li2CO3混合,以草酸为还原剂,在常温机械活化作用下合成出无定形态LiFePO4,然后低温热处理合成晶态的LiFePO4.考察了不同合成温度、时间对产物晶形结构、形貌和电化学性能的影响.结果表明,600℃热处理12h后制得的LiFePO4粒径细小且分布均匀,一次粒子粒径在100~200nm之间;该材料在0.1、0.2、0.5和1C下首次放电比容量分别为165、160、156和154mAh/g,50次循环后放电比容量分别为163、159.2、154.66和153.4mAh/g,容量保持率分别为98.8%、99.5%、99.1%和99.6%.  相似文献   

12.
球形化是正极材料LiFePO4的重要研究方向.采用喷雾干燥。碳热还原法制备了具有多孔结构的LiFePO4/C球形粉体材料。结果表明:在550-800℃合成的样品均为橄榄石结构LiFePO4/C,晶格常数c/a随着温度的升高而减小,800℃下热处理12h制备的多孔球形LiFePO4/C粉体材料,晶格常数c/a=0.7806,平均粒径在100m左右,每个微球都有直径在200-700nm之间的亚微米颗粒堆积而成,具有流动性好、表面易涂覆等特点,在室温下,C/3首次放电比容量可达119mAh/g。  相似文献   

13.
用固相法和液相法分别制备了LiFePO4正极材料,对材料进行了XRD、SEM、交流阻抗和振实密度的测试.结果表明,固相法和液相法制备的材料都是单一橄榄石结构,其振实密度分别是1.25g/cm3和1.58g/cm3;在室温0.1C下材料的首次放电比容量分别是134.2mAh/g和147.5mAh/g,经过100次循环后,其容量保持率分别为86.8%和94.0%.  相似文献   

14.
用溶胶-凝胶法和微波法相结合制备了碳包裹的LiFePO4/C材料.XRD、SEM和电化学测试表明:真空干燥下微波18min所得样品为橄榄石型非晶结构,粒径在30~100nm,0.2C充放电的首次放电比容量为120mAh/g,第16次循环的比容量为113mAh/g.  相似文献   

15.
以FeC2O4·2H2O和LiH2PO4为原料,经过两步机械活化后在惰性气氛中经高温烧结,合成出LiFePO4正极材料.研究了合成温度与反应时间对材料性能的影响.采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌,结果表明,600℃下烧结18h合成的样品具有规则的橄榄石型结构.样品的电化学性能良好,在室温下以0.1C倍率充放电,首次放电比容量可达到155.6mAh/g,为其理论容量的91.53%,且循环50次后比容量仅衰减4.11%,采用1C倍率放电时,首次放电比容量达到149.3mAh/g.  相似文献   

16.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

17.
使用溶胶凝胶原位碳热还原制备了Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料(石墨烯/LiCo0.03Fe0.97PO4),以期获得比容量高、充放电速率快和循环性能优良的锂离子电池正极材料。结构和形貌表征结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有三维导电网络结构,颗粒在石墨烯片层间生长均匀,粒径在200nm左右。电化学测试结果显示:石墨烯/LiCo0.03Fe0.97PO4复合材料具有高的可逆比容量和优异的循环倍率性能。2.0~4.0V充放电下0.1C时的首次放电比容量为159mA·h·g-1,在10.0C下首次放电比容量也有74mA·h·g-1;0.5C下循环100次,比容量保持率为99.7%。石墨烯/LiCo0.03Fe0.97PO4复合材料电化学性能提高的原因主要为Co2+掺杂和石墨烯包覆的协同作用。  相似文献   

18.
共沉淀-焙烧法制备LiFePO4   总被引:4,自引:0,他引:4  
沈湘黔  占云  周建新  景茂祥 《功能材料》2006,37(8):1198-1200,1203
采用共沉淀法合成了无定形磷酸亚铁与磷酸锂的混合前驱体,这种前驱体在700℃下于还原性气氛中保温5.5h制得橄榄石型磷酸铁锂.采用XRD、FTIR、SEM和TG/DSC等手段对前驱体和焙烧产物的成分、结构、形貌及其热分解过程进行了研究.由不同热处理温度及反应时间下的LiFePO4转化率算得磷酸锂与磷酸亚铁在400~700℃下生成磷酸铁锂的反应速率常数和表观反应活化能(26.9kJ/mol).结果表明,Fe3(PO4)2与Li3PO4反应生成LiFePO4的过程主要由Li 、Fe2 在固相介质中的扩散速率所控制.因此,Fe3(PO4)2和Li3PO4的均匀混合有利于降低LiFePO4的焙烧温度和缩短反应时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号