首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deformation behavior in isothermal compression of Ti–6Al–4V alloy is investigated in the deformation temperatures ranging from 1093 K to 1303 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1 at an interval of an order magnitude and the height reductions ranging from 20% to 60% at an interval of 10%. Based on the experimental results in isothermal compression of Ti–6Al–4V alloy, the effect of processing parameters and grain size of primary α phase on the strain rate sensitivity exponent m and the strain hardening exponent n is in depth analyzed. The strain rate sensitivity exponent m at a strain of 0.7 and strain rate of 0.001 s−1 firstly tends to increase with the increasing of deformation temperature, and maximum m value is obtained at deformation temperature close to the beta-transus temperature, while at higher deformation temperature it drops to the smaller values. Moreover, the strain rate sensitivity exponent m decreases with the increasing of strain rate at the deformation temperatures below 1253 K, but the m values become maximal at a strain rate of 0.01 s−1 and the deformation temperature above 1253 K. The strain rate affects the variation of strain rate sensitivity exponent with strain. Those phenomena can be explained reasonably based on the microstructural evolution. On the other hand, the strain hardening exponent n depends strongly on the strain rate at the strains of 0.5 and 0.7. The strain affects significantly the strain hardening exponent n due to the variation of grain size of primary α phase with strain, and the competition between thermal softening and work hardening.  相似文献   

2.
This work investigated the effect of nominal boron additions of 0.1 and 1.0 wt.% on the elevated-temperature (455 °C) fatigue deformation behavior of Ti–6Al–4V(wt.%) castings for maximum applied stresses between 250 and 450 MPa (R = 0.1 and 5 Hz). Boron additions resulted in a dramatic refinement of the as-cast grain size, and larger boron additions resulted in larger titanium-boride (TiB) phase volume percents. The boron-containing alloys exhibited longer average fatigue lives than those for Ti–6Al–4V, which was suggested to be related to the reduced as-cast grain size and the addition of strong and stiff TiB phase. The Ti–6Al–4V–0.1B alloy exhibited the longest average fatigue lives. The TiB phase cracked during the fatigue experiments and this resulted in a decreasing Young's modulus with increased cycle number. Each alloy exhibited α-phase cracking and environmentally assisted surface edge cracking.  相似文献   

3.
A multiphase model for Ti–6Al–4V is proposed. This material is widely used in industrial applications and so needs accurate behaviour modeling. Tests have been performed in the temperature range from 25 °C to 1020 °C and at strain rates between 10−3 s−1 and 1 s−1. This allowed the identification of a multiphase mechanical model coupled with a metallurgical model. The behaviour of each phase is calibrated by solving an inverse problem including a phase transformation model and a mechanical model to simulate tests under thermomechanical loadings. A scale transition rule (β-rule) is proposed in order to represent the redistribution of local stresses linked to the heterogeneity of plastic strain. Finally this model is applied to two laser assisted processes: direct laser fabrication and laser welding.  相似文献   

4.
The constitutive behaviour and microstructural evolution of the near-β alloy Ti–5Al–5Mo–5V–3Cr in the α + β condition has been characterised during isothermal subtransus forging at a range of temperatures and strain rates. The results indicate that Ti–5Al–5Mo–5V–3Cr has a shallower approach curve, and therefore, offers a more controllable microstructure than the near-β alloy Ti–10V–2Fe–3Al. Flow softening is small in magnitude in both alloys in the α + β condition. The steady state flow stresses obey a Norton–Hoff constitutive law with an activation energy of Q = 183 kJ mol−1, which is similar to the activation energy for self-diffusion in the β phase, suggesting deformation is dominated by dynamic recovery in the β matrix. Good evidence is found for the existence of ω phase after both air cooling and water quenching from above the β transus. In addition, dissolution of the α phase is found to be slow at near-transus temperatures.  相似文献   

5.
An Al–6Mg alloy matrix composite reinforced with Ti–6Al–4V meshes was fabricated by pressure infiltration method; its damage behaviors impacted by hypervelocity aluminum projectiles were investigated. Results showed that the thin Tif/Al–6Mg composite target exhibits better protection efficiency and energy absorption ability than Al–6Mg alloy target. With projectile sizes increasing, bulge and spallation were observed on the back of the composite target. The Ti–6Al–4V meshes were tensed and deformed drastically in the spallation region, where micro-damages such as interfacial debonding and cracks were dominant. Shear localization was the primary failure characteristic for thin Al–6Mg alloy target. The adiabatic shear bands were observed near the crater of Al–6Mg alloy, not in Tif/Al–6Mg composite target. It was ascribed to the Ti–Al interfacial bonding strength and the high temperature strength for Ti–6Al–4V alloy.  相似文献   

6.
The present study was concerned with the effects of over-aging on damping property and fracture toughness in Ti–6Al–4V alloy. Damping property and toughness become important factors for titanium implants, which have big modulus difference between bone and implant, and need high damping capacity for bone-implant compatability. Widmanstätten, equiaxed, and bimodal microstructures containing fine α2 (Ti3Al) particles were obtained by over-aging a Ti–6Al–4V alloy. Over-aging heat treatment was conducted for 200 h at 545 °C. Fracture toughness, Charpy impact, and bending vibration tests were conducted on the unaged and the over-aged six microstructures, respectively. Charpy absorption energy and apparent fracture toughness decreased as over-aging was done, even if the materials were strengthened by precipitation of very fine and strong α2-Ti3Al particles. On the other hand, damping properties were enhanced by over-aging in Widmanstätten and equiaxed microstructures, but was weakened in bimodal microstructure due to the softening of tempered martensite and the decreasing of elastic difference between tempered martensite and α phase contained α2 particles, etc. These data can provide effective information to future work about internal damping and fracture properties of Ti–6Al–4V alloy.  相似文献   

7.
The tensile behavior of a newly developed Ti–6Al–2Sn–2Zr–3Mo–1Cr–2Nb–Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s−1. The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s−1, a discontinuity is found in the yield stress–temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.  相似文献   

8.
The objective of this research was to investigate the fatigue strength of Ti–6Al–4V using an ultrasonic fatigue system. Fatigue testing up to 109 cycles under fully reversed loading was performed to determine the ultra-high cycle fatigue behavior of Ti–6Al–4V. Endurance limit results were compared to similar data generated on conventional servohydraulic test systems and electromagnetic shaker systems to determine if there are any frequency effects. Fatigue specimens were tested with and without cooling air to determine the effects of increased specimen temperature caused by internal damping due to cycling at a very high frequency. An infrared camera was also used to record specimen temperatures at various load levels. Results indicate that the effects of frequency, including internal heating, on the very high cycle fatigue behavior of Ti–6Al–4V are negligible under fully reversed loading conditions.  相似文献   

9.
Plastic deformation behavior of dual-phase Ni–31Al intermetallics at elevated temperature was examined. It was found that the alloy exhibited good plasticity under an initial strain rate of 1.25 × 10−4 s−1 to 8 × 10−3 s−1 in a temperature range of 950–1075 °C. A maximum elongation of 281.3% was obtained under an initial strain rate of 5 × 10−4 s−1 at 1000 °C. The strain rate sensitivity, m value was correlated with temperature and initial strain rate, being in the range of 0.241–0.346. During plastic deformation, both the two phases Ni3Al and NiAl in dual-phase Ni–31Al could co-deform without any void formation or debonding, the initial coarse microstructure became much finer after plastic deformation. Dislocation played an important role during the plastic deformation in dual-phase Ni–31Al alloy, the deformation mechanism in dual-phase Ni–31Al could be explained by continuous dynamic recovery and recrystallization.  相似文献   

10.
Hot compressive behaviors of Ti–6Al–2Zr–1Mo–1V alloy at 1073 K, as well as the evolution of microstructure during deformation process, were investigated in this paper. The results shows that flow stress increases up to a peak stress, then decease with increasing strain, and forms a stable stage at last. The grain size also shows an decrease at first and increase after a minimum value. Dislocations are observed to produce at the interface of α/β phase, and the phase interface and dislocation circle play an important role in impeding the movement of dislocation. As strain increase, micro-deformation bands with high-density dislocation are founded, and dynamic recrystallization occurs.  相似文献   

11.
This study was undertaken to investigate the influence of Al–5Ti–1B and Al–5Zr master alloys on the structural characteristics and tensile properties of Al–12Zn–3 Mg–2.5Cu aluminum alloy. The optimum amount for Ti and Zr containing master alloys was selected as 1 wt.% and 6 wt.%, respectively. The results also showed that Ti containing master alloy is more effective in reducing average grain size of the alloy. T6 heat treatment was applied for all specimens before tensile testing. In heat treated condition, the average tensile strength of 505 MPa was found to be increased to 621 MPa for sample refined with 1 wt.% Al–5Ti–1B (0.05 wt.% Ti). SEM fractography of the fractured faces of several castings showed an overall macroscopically brittle appearance at low magnifications. At higher magnifications, unrefined specimens showed cracking along the grains, whereas Ti-refined specimens showed cracks in individual intermetallic compounds.  相似文献   

12.
The variability in fatigue behavior is often what drives the design of components such as turbine engine blades and disks. These components are critical and must be designed with a very low probability of failure over the lifetime of the system. To meet that design criterion, the lower limit of fatigue life capability is typically used. The challenge is to reliably predict the lower limit of fatigue behavior. This study investigates the fatigue variability of an alpha + beta processed Ti–6Al–4V turbine engine alloy by conducting a statistically significant number of repeated tests at a few conditions. Testing includes three conditions including two maximum stresses, 675 and 635 MPa; and two surface conditions, electropolished and low stress grinding. All tests are constant amplitude with a stress ratio of 0.1. A similar approach has been performed on several other turbine engine material systems often revealing a bimodal behavior. It is proposed that crack propagation using small crack growth data can be used to predict the low life behavior mode and is demonstrated with the Ti–6Al–4V data.  相似文献   

13.
The flow behavior of Al–Cu–Mg–Ag alloy and its microstructural evolution during hot compression deformation were studied by thermal simulation test. The flow stress increased with increasing the strain rate, and decreased with increasing the deforming temperature, which can be described by a constitutive equation in hyperbolic sine function with the hot deformation activation energy 196.27 kJ/mol, and can also be described by a Zener–Hollomon parameter. The dynamic recrystallization only occurred at low Z values, which must be below or equal to a constant of 5.31 × 1013 s−1. With decreasing Z value, the elongated grains coarsed and the tendency of dynamic recrystallization enhanced. Correspondingly, the subgrain size increased and the dislocation density decreased. And the main soften mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization.  相似文献   

14.
The hot deformation behavior and microstructure evolution of twin-roll-cast of Mg–2.9Al–0.9Zn–0.4Mn (AZ31) alloy has been studied using the processing map. The tensile tests were conducted in the temperature range of 150–400 °C and the strain rate range of 0.0004–4 s−1 to establish the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (i) the continuous dynamic recrystallization (CDRX) domain in the range of 200–280 °C/≤0.004 s−1 with fine grains which provides a potential for warm deformation such as deep drawing; (ii) the discontinuous dynamic recrystallization (DDRX) domain around 400 °C at high strain rate (0.4 s−1 and above) with excellent elongation which can be utilized for forging, extrusion and rolling; (iii) the grain boundary sliding (GBS) domain at slow strain rate (below 0.004 s−1) above 350 °C appears abundant of cavities, which result in fracture and reduce the ductility of the adopted material; and (iv) the flow instability region which locates at the upper left of the processing map shows the metallographic feature of flow localization.  相似文献   

15.
H.P. Qu  P. Li  S.Q. Zhang  A. Li  H.M. Wang   《Materials & Design》2010,31(1):574-582
This article presents fabrication, microstructure and mechanical properties study of Ti/TiAl functional gradient material. Ti–47Al–2.5V–Cr/Ti–6Al–2Zr–Mo–V gradient material was successfully fabricated by the laser melting deposition (LMD) manufacturing process. Microstructure and chemical composition was characterized by OM, SEM, TEM and EPMA. The Vickers hardness and room-temperature tensile property was evaluated on longitudinal direction. Results showed that fully lamellar (FL) microstructure consisted of γ-TiAl and α2-Ti3Al was formed on the Ti–47Al–2.5V–Cr side, while coarse basket weave microstructure was formed on the Ti–6Al–2Zr–1Mo–1V side. No cracking was found in the gradient zone after aging at 800 °C for 48 h. The room-temperature tensile strength of the as-deposited specimen is up to approximately 1198.8 MPa in the longitudinal direction, while the tensile elongation is approximately 0.4%, indicating a typical brittle fracture.  相似文献   

16.
This paper addresses foams which are known as non-stochastic foams, lattice structures, or repeating open cell structure foams. The paper reports on preliminary research involving the design and fabrication of non-stochastic Ti–6Al–4V alloy structures using the electron beam melting (EBM) process. Non-stochastic structures of different cell sizes and densities were investigated. The structures were tested in compression and bending, and the results were compared to results from finite element analysis simulations. It was shown that the build angle and the build orientation affect the properties of the lattice structures. The average compressive strength of the lattice structures with a 10% relative density was 10 MPa, the flexural modulus was 200 MPa and the strength to density ration was 17. All the specimens were fabricated on the EBM A2 machine using a melt speed of 180 mm/s and a beam current of 2 mA. Future applications and FEA modeling were discussed in the paper.  相似文献   

17.
Young's modulus and tensile properties of cold rolled Ti–8 mass% V and (Ti–8 mass% V)–4 mass% Sn alloy plates consisting of α′ martensite were investigated as a function of tensile axis orientation in this work. A single phase of α′ (hcp) martensite is obtained in Ti–8 mass% V and (Ti–8 mass% V)–4 mass% Sn alloys by quenching after solution treatment. By 86% cold rolling, acicular α′ martensite microstructures change into extremely refined dislocation cell-like structure with an average size of 60 nm, accompanied with the development of cold rolling texture in which the basal plane normal is tilted from the plate normal direction (ND) toward transverse direction (TD) at angles of ±49° for Ti–8% V alloy and ±46° for (Ti–8 mass% V)–4 mass% Sn alloy. No apparent anisotropy of Young's modulus (E) is observed for as-quenched Ti–8% V (E = 76–83 GPa) and (Ti–8% V)-4%Sn (E = 69–79 GPa). In contrast, Young's modulus increases with increasing angle from the rolling direction (RD) to TD for cold rolled Ti–8% V (E = 72–94 GPa) and (Ti–8% V)–4%Sn (E = 63–85 GPa). The observed anisotropy of Young's modulus can be reasonably explained in terms of the cold rolling α′ texture.0.2% proof stress and tensile strength are independent of tensile orientation for cold rolled Ti–8% V and (Ti–8% V)–4%Sn alloys. In contrast, larger elongation to fracture is obtained in specimens deviated by 30°, 45° and 60° from RD than by 0°, 75° and 90°. Scanning electron microscopy (SEM) fractographs reveal that quasi-cleavage-like fracture plane appears in 0° specimen of cold rolled Ti–8% V which shows brittle fracture and other specimens of cold rolled Ti–8% V and (Ti–8% V)–4%Sn alloys are fractured accompanied with necking and dimple formation. It is suggested from these results that brittle fracture is related to the activation of limited number of slip system and Sn addition leads to the activation of multiple slip systems.  相似文献   

18.
The tensile deformation behavior of Ti–3Al–4.5V–5Mo titanium alloy was studied. The results show that there are obvious yield points on true stress–true strain curves of annealing structures, then a stress drop occurs. The curves show linear work-softening after yielding at annealing temperature of 720–780 °C and linear work-hardening at annealing temperature of 800–840 °C. Elastic energy stored in the α-phase is dramatically released after plastic deformation of the β-phase, which leads to the stress drop.  相似文献   

19.
Laser surface modification of Ti–6Al–4V with an existing calcium phosphate coating has been conducted to enhance the surface properties. The electrochemical and mechanical behaviors of calcium phosphate deposited on a Ti–6Al–4V surface and remelted using a Nd:YAG laser at varying laser power densities (25–50 W/mm2) have been studied and the results are presented. The electrochemical properties of the modified surfaces in Ringer’s physiological solution were evaluated by employing both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The potentiodynamic polarizations showed an increase in the passive current density of Ti–6Al–4V after laser modification at power densities up to 35 W/mm2, after which it exhibited a decrease. A reduction in the passive current density (by more than an order) was observed with an increase in the laser power density from 25 to 50 W/mm2. EIS studies at the open circuit potential (OCP) and in the passive region at 1.19 V showed that the polarization resistance increased from 8.274 × 103 to 4.38 × 105 Ω cm2 with increasing laser power densities. However, the magnitudes remain lower than that of the untreated Ti–6Al–4V at OCP. The average hardness and modulus of the laser treated Ti–6Al–4V, evaluated by the nanoindentation method, were determined to be 5.4–6.5 GPa (with scatter <±0.976 GPa) and 124–155 GPa (with scatter <±13 GPa) respectively. The corresponding hardness and modulus of untreated Ti–6Al–4V were ~4.1 (±0.62) and ~148 (±7) GPa respectively. Laser processing at power densities >35 W/mm2 enhanced the surface properties (as passive current density is reduced) so that the materials may be suitable for the biomedical applications.  相似文献   

20.
Flow stress during hot deformation depends mainly on the strain, strain rate and temperature, and shows a complex and nonlinear relationship with them. A number of semi-empirical models were reported by others to predict the flow stress during hot deformation. This work attempts to develop a back-propagation neural network model to predict the flow stress of Ti–6Al–4V alloy for any given processing conditions. The network was successfully trained across different phase regimes (α + β to β phase) and various deformation domains. This model can predict the mean flow stress within an average error of 5.6% from the experimental values, using strain, strain rate and temperature as inputs. This model seems to have an edge over existing constitutive model, like hyperbolic sine equation, and has a great potential to be employed in industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号