首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This study was to compare the relative ability of seven common fitting models, i.e. Pure Power Law (PPL), Generalized Power Law (GPL), Modified Power Law (MPL), Modified Power Law Series (MPLS), Standard Sigmoid (SS), Generalized Logistic Sigmoid (GLS) and Prony Series (PS), to construct the tensile relaxation modulus master curve of dense graded asphalt mixes. To this end, cylindrical asphalt mixture specimens containing crushed stone aggregates with 60/70 penetration asphalt binder were fabricated using two aggregate gradations, two binder contents, two air void levels and three ageing conditions with three replicates. Direct tension relaxation modulus tests were conducted on the specimens at four different temperatures using the trapezoidal loading pattern at a low level of input strain. Tensile relaxation modulus master curves were constructed using all the fitting models together with the numerical shifting technique. Finally, both the graphical and statistical comparisons were made among the fitting models, and the best one was found to be PS, followed by MPLS, GLS, MPL, SS, GPL and PPL.  相似文献   

2.
《Strain》2018,54(2)
The tensile properties of a polymer‐bonded explosive (PBX) were systematically studied by using quasi‐static and dynamic experiments. A non‐linear constitutive relation was developed to describe the tensile behaviour of the PBX. The tensile properties of the PBX under different strain rates and temperatures were measured in quasi‐static tests. The tensile behaviour of the PBX was found to exhibit high strain rate and strong temperature dependence, attributable to the large fraction of the polymer binder. To obtain the rational dynamic tensile results, a modified split Hopkinson tensile bar (SHTB) setup was designed such that the specimens were in dynamic stress equilibrium and deformed homogeneously at nearly constant strain rates. To characterise the viscoelastic behaviour, the master modulus curve was derived from the tensile stress relaxation tests at different temperatures. The non‐linear constitutive model was implemented in ABAQUS to predict the tensile behaviour of the PBX. The computational results were found to be in good agreement with the experimental results.  相似文献   

3.
Asphalt concrete behavior is heavily dependent on temperature and loading rate. Hence, the material is typically tested at a range of temperatures and loading frequencies to capture its properties. Results are then used to develop a master curve exhibiting material behavior at the full spectrum of loading frequencies. An abbreviated testing protocol, under AASHTO PP 61-13, proposes a practical approach for development of this master curve. In this practice, the low temperature asymptote of the master curve is dominated by the limiting maximum modulus estimated through the Hirsch model. In this study, the dynamic modulus (DM) testing coupled with impact resonance (IR) test was used to evaluate the effect of this limiting maximum modulus on construction of the asphalt concrete master curve. Three different asphalt mixtures prepared with the same gradation and binder content, but different grades of stiffness were tested. The DM testing was performed at multiple temperatures and loading frequencies. The IR tests were conducted on the same specimens at the same temperatures. Two sigmoid functions (MEPDG and Richards models), and three shift factors (Arrhenius, Williams–Landel–Ferry, and polynomial) were utilized in the analysis. Richards sigmoid function coupled with polynomial shift factor provided the best fitting accuracy to the measured data. It was observed that the limiting maximum modulus obtained from experimental data was underpredicted by that obtained from the Hirsch model. The results indicated potential benefits of the IR test as a complementary testing tool to the abbreviated DM testing protocol to reliably characterize asphalt concrete.  相似文献   

4.
This paper discusses the ageing of asphalt binder of long-term pavement performance (LTPP) sites in Southeast Queensland. The effects of pavement age on binder deterioration were examined by performing ‘Shell’ sliding plate micro-viscometer laboratory tests in accordance with Australian and New Zealand Standard AS/NZS 2341.5: 1997. The tests were carried out on bituminous core samples obtained from the LTPP sites to determine the apparent viscosity of the asphalt binder. A binder deterioration model (BDM) was developed by establishing a relationship between the apparent viscosities of the binder with pavement age. The apparent viscosity data generated using the BDM were compared with that computed using the bitumen hardening model developed by Oliver (2003). The two models show a consistent trend in the binder deterioration, and the results were analysed statistically using regression analysis, Root Mean Square Error and t-test methods. The t-test shows that the data generated by the BDM have no significant deviation from the prediction by Oliver's model.  相似文献   

5.
The effects of hygrothermal conditions on damage development in quasi-isotropic carbon-fiber/epoxy laminates are described. First, monotonic and loading/unloading tensile tests were conducted on dry and wet specimens at ambient and high temperatures to compare the stress/strain response and damage development. The changes in the Young's modulus and Poisson's ratio were obtained experimentally from the monotonic tensile tests. The critical stresses for transverse cracking and delamination for the above three conditions are compared. The delamination area is measured by using scanning acoustic microscopy (SAM) at various loads to discuss the effects of delamination on the nonlinear stress/strain behavior. Next, the stress distributions under tensile load including hygrothermal residual stresses are computed by a finite-element code and their effects on damage initiation are discussed. Finally, a simple model for the prediction of the Young's modulus of a delaminated specimen is proposed. It is found that moisture increases the critical stresses for transverse cracking and delamination by reducing the residual stresses while high temperature decreases the critical stresses in spite of relaxation of the residual stresses. The results of the finite-element analysis provide some explanations for the onset of transverse cracking and delamination. The Young's modulus predicted by the present model agrees with experimental results better than that predicted by conventional models.  相似文献   

6.
One of the main distresses of hot mix asphalt (HMA) is moisture damage. The most common method for decreasing this type of distress is using antistrip additives. In this study, the effect of nanoparticles was evaluated as an antistrip agent on the moisture damage of HMA. Two types of aggregates were evaluated in this study with different sensitivities against moisture damage (limestone and granite aggregate) and the asphalt binder with 60/70 penetration grade and nano zinc oxide (ZnO) in two different percentages by weight of the asphalt binder. The tests employed to evaluate the effects of modifying asphalt binder by nanomaterials on the moisture damage of asphalt mixture were surface free energy (SFE) and AASHTO T283. The results showed that the ratio of wet/dry values of indirect tensile strength for the mixtures containing nano ZnO for two types of aggregate were higher than the control mixtures. In addition, the results of the SFE method showed that adding nano ZnO increased the total SFE of the asphalt binder, which led to better coating of the aggregate with asphalt binder. Nano ZnO decreased the acid to base ratio of SFE of asphalt binder, while it led to improving adhesion between the asphalt binder and acidic aggregate that are prone to moisture damage.  相似文献   

7.
In this study, a discrete element computational model is applied to simulate the fracture behavior of asphalt mixtures at low temperatures. In this model, coarse aggregates are explicitly represented by rigid spherical particles. The bonds that connect these particles represent the fine aggregate matrix (FAM), which is defined as the combination of asphalt binder and fine aggregates. The bending beam rheometer (BBR) tests are performed to determine the strength and Young’s modulus of FAM at low temperatures. The model is then used to simulate the semi-circular bend (SCB) tests on the mixtures. The model is verified by a series of BBR and SCB tests on both conventional and graphite nano-platelet modified asphalt materials. The comparison between the experimental and simulated results indicates that the peak load capacity of the SCB specimens is primarily governed by the tensile strength of the FAM. However, in order to capture the entire load–displacement curve of the SCB specimens, one needs to employ a softening constitutive model of the FAM, which requires the information on its fracture energy. Several experimental methods for measuring the fracture energy of FAM are discussed for future prediction of the complete load–displacement response of asphalt mixtures at low temperatures.  相似文献   

8.
The utilization of crumb rubber and reclaimed asphalt pavement (RAP) has proven to be economical, environmentally sound and effective in increasing the performance properties of the asphalt mixtures. The objective of this research was to investigate the laboratory engineering behavior characteristics of the rubberized asphalt binders and mixtures made with PG 64-22 and a softer binder (PG 52-28) containing a high percentage of RAP (30%). Some of the testing used for this research included viscosity, dynamic shear rheometer (DSR), bending beam rheometer (BBR), indirect tensile strength (ITS), resilient modulus, and fatigue life evaluations. The experimental design included the use of two aggregate and RAP sources, two virgin binder grades (PG 64-22 and PG 52-28), two types of crumb rubber (ambient and cryogenic), and four rubber contents (0%, 5%, 10%, and 15%). The results indicated that: (1) the crumb rubber improved the aging resistance of the aged binder and prolonged the fatigue life of the mixtures containing 0% RAP, in addition, results indicated a decrease of ITS and resilient modulus values was found as the rubber content increased, regardless of rubber type; (2) the utilization of softer binder decreased the influence of aged binder and decreased the resilient modulus values of the mixtures. In most cases, regardless of rubber types, the rubberized mixtures containing 30% RAP made with PG 52-28 binder did not show a significant increase in fatigue life with those made with PG 64-22 binder.  相似文献   

9.
The primary objective of this work is to characterize and compare the dynamic mechanical behavior of asphalt concrete mixes with styrene butadiene styrene (SBS) polymer and crumb rubber modified asphalt binders with the behavior of mixes with unmodified viscosity grade asphalt binders. Asphalt binders are characterized for their physical and rheological properties. Simple performance tests like dynamic modulus, dynamic and static creep tests are carried out at varying temperatures and time. Dynamic modulus master curves constructed using numerical optimization technique is used to explain the time and temperature dependency of modified and unmodified asphalt binder mixes. Creep parameters estimated through regression analysis explained the permanent deformation characteristics of asphalt concrete mixes. From the dynamic mechanical characterization studies, it is found that asphalt concrete mixes with SBS polymer modified asphalt binder showed significantly higher values of dynamic modulus and reduced rate of deformation at higher temperatures when compared to asphalt concrete mixes with crumb rubber and unmodified asphalt binders. From the concept of energy dissipation, it is found that SBS polymer modification substantially reduces the energy loss at higher temperatures. Multi-factorial analysis of variance carried out using generalized liner model showed that temperature, frequency and asphalt binder type significant influences the mechanical response of asphalt concrete mixes. The mechanical response of SBS polymer modified asphalt binders are significantly correlated with the rutting resistance of asphalt concrete mixes.  相似文献   

10.
This paper aims to study the effect of adding different ratios (from 10 to 40%) of three recycling agents (RAs), including RA-25, RA-75 and RA-250, to the reclaimed asphalt binder (RAB) with a viscosity of 42800 poises and also to the reclaimed asphalt concrete (RAC) according to the Marshall mix design method. The study includes a variety of tests designed to determine the difference between the three RAs in terms of penetration, viscosity, softening point, ductility, toughness of the asphalt binder, as well as indirect tensile strength, and stability value of Marshall specimens. The results show that adding the RA increased the cohesiveness of RAB and thus improved the applicability of RAB. Of the three RAs in this study, RA-25 offered the best performance when added to asphalt binder. This study proposes a recycling model to predict the changes in RAB viscosity when adding RAs. The results of this model show a close fit with experimental data from laboratory tests. This model allows highway engineers to estimate the amount of RA added to aged binder. Marshall tests show that the RA-75 specimen had higher indirect tensile strength and stability value than the RA-25 and RA-250 specimens. Based on overall performance and cost comparisons among the three RAs, this study regards RA-75 as the RA of choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号