首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
程彬彬  杨士莪 《声学技术》2004,23(Z1):233-236
矢量水听器由于其不但能获取声场中的声压信息,还能获取质点振速这一矢量信息,所以给其信号处理带来了更大的空间.单个的矢量水听器由于其具有这一特征,就能对声场中的目标进行方位估计,而且由于振速为矢量具有方向性,故不会出现左右弦的模糊问题,在工程应用上也由于其小的尺寸而受到重视,本文针对单个的压差式矢量水听器,利用其声压和振速的相关性;对单个的目标进行方位估计仿真,并用水池试验数据进行了验证.  相似文献   

2.
时胜国  杨德森  王三德 《声学技术》2003,22(Z2):164-166
1引言 矢量水听器由声压水听器和质点振速水听器复合而成,声压水听器测量空间的声压,质点振速水听器测量声场中的质点振动速度,因此,矢量水听器共点、同步测量声场的声压标量和质点振速矢量.一般,矢量水听器是将声压水听器均匀布放在振速水听器(球型)周围.根据声学理论可知,由于振速水听器的声散射和二次辐射,会对声压水听器的测量结果产生影响.因此,需要对振速水听器的近场声压特性进行理论研究.本文从同振球型振速水听器的工作原理出发,对其声压场进行了理论计算,分析它对声压测量值的影响.  相似文献   

3.
将匹配场原理应用到单矢量水听器上实现声源的三维定位,根据声压、质点振速表达式进行推导,获得Bartlett相关表达式并进行分析和仿真。对仿真结果进行分析后指出:声压方法可以获得距离、深度估计,但无法区分角度;声压、轴向振速、法向振速组合可以区分角度并且分辨左右弦,但是同声压方法相比,距离深度分辨严重下降;而垂直振速、轴向振速、法向振速组合可以区分角度并且分辨左右弦,并且在距离、深度上比声压方法稍有提高。所以在单矢量水听器下,为了同时获得距离、深度、角度的估计,需要应用垂直振速、轴向振速、法向振速组合方法。  相似文献   

4.
矢量水听器阵列自适应子空间跟踪算法   总被引:1,自引:0,他引:1       下载免费PDF全文
矢量水听器能同时共点获得声场中声压和振速,与其他水听器相比,能获得更多的信息量,具有很好的应用前景。矢量水听器阵列的MUSIC算法能实现360°无模糊方位估计,然而对于方位时变的目标源,该算法很难完成对上述目标源方位进行实时跟踪估计。鉴于此,将MALASE算法和MUSIC算法相结合,提出了一种矢量水听器阵列的自适应子空间跟踪算法。仿真结果表明,该算法既保留了MUSIC算法的性能,又实现了对目标源进行实时跟踪估计,且方位估计误差仅为0.4°左右。  相似文献   

5.
利用声压与振速垂直分量的弱相关性,将矢量水听器声压与振速垂直分量通道进行时反处理。仿真和试验都表明,此种处理方法可有效降低水声通信的误码率。  相似文献   

6.
球形壳体障板声散射近场矢量特性   总被引:3,自引:3,他引:0       下载免费PDF全文
为了实现矢量水听器在水面或水下载体上的工程应用,研究了球形壳体障板声散射近场矢量特性。采用弹性薄壳理论结合边界条件导出了球形壳体障板声散射的声压和质点振速表达式,给出相应的声强表达式。数值计算了球形壳体障板声散射的近场特性,重点关注其近场矢量特性。理论分析和数值计算结果表明,由于球形壳体障板的散射作用,声压场和质点振速场表现为复杂的干涉结构;质点振速方向和声源方位不一致;声压和质点振速不再同相;声强方向也不再反映声源方位。本文结果为矢量水听器在球形载体和球形障板条件下的工程应用提供理论依据。  相似文献   

7.
李思纯 《声学技术》2008,27(5):750-753
提出了声矢量信号双谱与互双谱估计算法,给出了算法的具体步骤。将算法应用于两类水中目标的特征提取,并用所提取特征构造了LMBP神经网络的输入向量集,对矢量水听器实测的水中目标进行了分类识别。识别结果验证了所提出算法的有效性。实验表明,B类目标识别率优于A类目标,原因是由于B类目标特征频率较集中,而A类目标特征频率较分散所致。互双谱特征分类结果优于双谱特征分类结果这个事实是与声压振速联合信号处理优于声压或振速单一信号处理相吻合的。  相似文献   

8.
吴艳群  胡永明 《声学技术》2009,28(5):577-581
以声线理论为基础,建立了发射波形已知的声场振速信号的有限差分数值计算模型。在保证精度的前提下,仿真宽带信号所需的计算量和运算时间都大大减少,可满足实时处理的需要。通过仿真分析了浅海环境下近、远场的多途信号的到达结构及其对矢量水听器俯仰角定向性能的影响。研究结果表明:多途相干信号给矢量水听器的俯仰角估计带来严重误差,应该寻求匹配场处理或者其它信号处理技术提取直达波以改善其性能;使用等声速剖面近似弱负梯度声速剖面,对声压信号和垂直振速信号时域波形影响较小,但对水平振速的时域波形影响很大。  相似文献   

9.
拖曳阵声纳的左右舷模糊是实际应用中需要解决的问题。采用矢量水听器可以较好地解决此问题。采用波数.频率谱方法讨论同振柱形矢量水听器的流噪声。根据圆柱套管外壁湍流边界层的特点和同振柱形矢量水听器的工作原理,导出矢量水听器的声压通道和振速通道的噪声功率谱。通过数值积分法估计了流噪声功率谱与护套尺寸、水听器尺寸和拖曳速度等参数的关系。针对同振柱形矢量水听器的特点,所得结果有实际参考价值。  相似文献   

10.
随着声呐探测系统性能和稳定性的不断提高,矢量水听器因能同时共点测量声波的声压和振速信息,已开始应用于声呐探测系统。为保障海上实验,设计制作了胶囊形三维压电同振式矢量水听器。依据比较法测量原理,分别在驻波声管和消声水池中,对矢量水听器的x、y、z和p通道的低频段和高频段进行了灵敏度和指向性测试。测试结果表明,该型矢量水听器灵敏度较高、指向性较好,能够满足海上实验的需求。  相似文献   

11.
声矢量传感器由声压传感器和质点振速传感器组成,可用在空间某点同步测量声场的声压和质点振速信息。但矢量传感器在实际制作时,可能存在声压传感器和质点振速传感器中心不一致的情况,即矢量声场的非共点测量。这会使得声压与振速通道之间的接收信号存在时延差,从而影响矢量传感器的定向性能。从理论上分析了时延差对平均声强法定向的影响,即降低了信号处理的信噪比及引入π相位的定向误差,并提出采用互相关声能流法进行定向。通过仿真分析了中心不一致、入射角度和信噪比等因素对不同类型的目标定向结果的影响,并验证和讨论了互相关声能流定向算法的有效性和适用性。  相似文献   

12.
矢量声压振速联合处理建立在信号的声压和振速相位基础上,海洋环境边界影响将改变矢量声场声压振速的幅度和相位特性.首先根据南海环境条件结合水下目标辐射噪声测量,采用声场矢量简正波理论估算海面非相干偶极子噪声和水下点声源矢量强度随深度的变化,然后设计了可用于深海海域噪声测量的矢量水听器测试系统,获取了南海海域典型深度上的背景噪声矢量强度并进行了特性分析.结果表明:深海背景噪声谱级在500Hz以下基本上不随深度变化,在500Hz~3kHz频段浅深度背景噪声谱级略高于较深深度的背景噪声;振速垂直分量的背景噪声要小于声压和振速水平分量的噪声谱级.  相似文献   

13.
李敏  杨秀庭  李启虎 《声学技术》2007,26(6):1135-1139
研究矢量均匀线列阵波束形成算法的左右舷分辨性能。水听器可同步共点地测量声场的声压和质点振速,为一具有指向性的空间共点阵,从而能够解决单线阵声呐的目标左右舷模糊问题。文章分析了采用不同波束形成方法时矢量阵广义Cardiod处理和声强处理的目标左右舷分辨性能,并利用海试数据进行了验证。研究结果表明:自适应波束形成具有比常规波束形成更佳的左/右舷分辨性能,且对矢量阵处理而言,广义Cardioid处理更为稳健和实用。  相似文献   

14.
激光外差干涉是新一代水声声压基准的主要技术,光学干涉系统中的信号解调算法直接影响质点振速和声压量值。为准确得到测量结果,详细介绍了如何从多普勒信号中得到水质点振速的过零点解调算法,并建立了一套在线解调系统。该系统利用信号源产生两路相互正交的多普勒信号模拟光电二极管的输出,再经差分放大电路后进入示波器进行数据采集,最后由主机软件在线读取数据并完成质点振速解调。实验结果有效验证了过零点算法和解调系统的正确性和稳定性,所设计的过零点解调系统可直接应用于激光外差干涉法复现水声声压。  相似文献   

15.
Two methods of particle sizing using an acoustic method are presented. The technique relies on the detection and measurement of elastic waves arising from impact of the particles with a small target plate. The acoustic impact signal, as measured from a high fidelity piezoelectric transducer, is characterised by the first wave arrival (compression wave) amplitude and risetime. A theoretical approach, based upon Hertzian impact theory and elastic wave propagation theory, is developed and used to determine the relationship between the impact dynamics of the particle and the acoustic signal. The first method of particle sizing relies upon amplitude measurements alone but requires accurate system calibration and full knowledge of the particle impact velocity, incident angle and coefficient of restitution. The velocity measurements were determined using a laser Doppler technique. The second approach for particle sizing incorporates risetime measurement and only depends very weakly upon the compression wave amplitude, thus minimizing the need for accurate absolute calibration. Knowledge of the impact velocity, incident angle, and coefficient of restitution were not required.Spherical particles of glass in the size range 35 to 140 µm diameter were dropped onto an aluminium target plate at an incident velocity of 8.1 m/s and angle to the surface normal of 0°, 40°, and 61°. The two acoustic methods were used to size the particles, and the results were compared to the particle size distributions obtained from video microscope measurements. The first sizing method undersized the smaller particles by 20% to 30% and oversized the larger ones by 5% to 10%. However, the second approach gave much smaller errors and consistently undersized all sizes of particle by just a few percent. This undersizing was understood in terms of some plasticity in the target that occurred during particle impact.  相似文献   

16.
借助于传声电容、传声放大器等声学测量仪器和热线风速仪等流场测量仪器及计算机数据采集系统,本文实验观察了有无强声场叠加及不同声场强度时流场瞬时速度波形的变化,并对声场作用下的平均速度、脉动速度、速度频谱、速度自相关、脉动速度和脉动声强互相关等流动特征参数进行了计算与分析。发现了强声对流场的调制作用,流动速度会随声音信号同步脉动,且声强越大,速度脉动幅度越大。当声场强度超过约155dB时,声场进入非线性区,波形从正弦波变为锯齿波。声波诱发的大幅度周期脉动及非线性效应,提高了流动的湍流特性。这些发现,将有助于对声凝聚机理的进一步研究。  相似文献   

17.
彭汉书  李风华 《声学技术》2008,27(2):163-167
基于矢量水听器能够比传统的声压水听器提供更多的声场信息,文章提供了一种利用矢量水听器阵列(AVS)进行浅海地声参数反演的方法。首先,对声场矢量的传播规律进行了研究;其次,利用矢量匹配场(MFP)方法进行了海底声速的反演:最后利用声压和质点垂直振速的传播损失差反演了海底吸收。基于矢量水听器的海底参数反演方法主要具有下述优点:一是利用矢量匹配场反演海底声速能够有效减小参数估计误差:二是利用声场矢量传播损失差进行海底吸收反演能够排除信号源级起伏对反演的干扰。实验结果表明,基于矢量水听器阵列的海底参数反演能够很好的进行声场传播预报工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号