首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以针刺整体炭毡为预制体,采用化学气相渗透法(CVI)增密制备C/C多孔体,然后采用反应熔体浸渗法(RMI),将Cu与Si同时熔渗进C/C坯体中制备CuxSiy改性C/C-SiC复合材料.研究CuxSiy改性C/C-SiC复合材料的组织结构、力学性能和摩擦磨损性能,并与C/C-SiC复合材料进行对比.结果表明:CuxSiy改性C/C-SiC复合材料的弯曲强度和冲击韧性略低于C/C-SiC复合材料的;采用30Cr钢作对偶时,CuxSiy改性C/C-SiC复合材料的摩擦因数约为0.24,线磨损率小于4 μm·side-1·cycle-1,均与C/C-SiC复合材料的相近,但其摩擦表面温度降低约50 ℃;以自身材料作对偶时,CuxSiy改性C/C-SiC复合材料的摩擦磨损性能略低于C/C-SiC复合材料的.  相似文献   

2.
采用温压?原位反应法制备C/C-SiC复合材料,利用QDM150型摩擦试验机研究短炭纤维(SCF)长度和纤维体积分数对C/C-SiC制动材料摩擦磨损性能的影响。结果表明:C/C-SiC制动材料能够保持较高且稳定的摩擦因数;SCF的体积分数将影响C/C-SiC制动材料的摩擦磨损性能,纤维体积分数为10%时,材料具有适中的摩擦因数和较低的磨损率;SCF长度对C/C-SiC制动材料的摩擦磨损性能有显著影响,炭纤维长度为12 mm时,材料具有最佳的摩擦磨损性能。  相似文献   

3.
不同成分对C/C-SiC材料摩擦磨损行为的影响与机理   总被引:8,自引:2,他引:8  
采用温压-原位反应法制备C/C-SiC复合材料,研究了SiC、石墨和树脂炭成分对C/C-SiC材料摩擦磨损行为的影响及其机理.结果表明:SiC在摩擦表面摩擦膜的形成过程中起骨架作用,提高SiC的含量有利于提高摩擦系数,降低磨损率;树脂炭在材料中具有粘结各成分和提高摩擦系数的作用,但其成膜性较差,易增大磨损率;石墨粉在制动过程中起润滑作用,适量石墨粉有助于形成稳定的摩擦膜降低磨损率;摩擦表面摩擦膜的形成有利于减少C/C-SiC材料的磨损率.  相似文献   

4.
以低密度的C/C复合坯体为预制体,分别采用反应熔渗(RMI)、化学气相沉积(CVD)、浸渍-原位反应技术对其进行陶瓷改性.结果表明:改性陶瓷分别以SiC和c-BN的形式渗入C/C复合坯体内.摩擦试验结果表明:采用RMI技术制备的C/C-SiC复合材料摩擦因数较高,高达0.3到0.9;采用CVD技术制备的C/C-SiC复合材料的摩擦因数在0.20~0.36之间;而采用浸渍-原位反应技术制备的c-BN改性C/C复合材料的摩擦因数较低,为0.10~0.20.SEM观察表明:采用RMI技术制备的C/C复合材料的摩擦表面粗糙、未形成完整的摩擦膜,而采用另两种技术制备的C/C复合材料均形成了较完整、致密的摩擦膜.  相似文献   

5.
以短切炭纤维、石墨粉、硅粉、树脂为原料,采用新开发的温压-熔融渗硅(WC-RMI)法制备C/C-SiC摩擦材料,对不同制动速度下材料的摩擦磨损性能进行研究,并对温压-熔融渗硅法的制备工艺过程进行理论分析。结果表明:C/C-SiC材料的密度可达1.78g/cm3,残留单质Si的含量为0.3%,摩擦因数为0.36~0.43,体积磨损量低至0.6×10-2cm3/MJ,且随着制动速度的增大,其磨损量迅速下降并趋于平稳;C/C-SiC材料在摩擦过程中能够形成光亮、平整、连续的摩擦膜,有效降低C/C-SiC材料的磨损量。  相似文献   

6.
通过掺杂活性元素Ti颗粒,采用无压浸渗法制备了Si C/Fe-Si复合材料。采用XRD、SEM以及EDS等技术手段,分析复合材料的相组成及显微结构。结果表明:Fe-Si合金能够自发浸渗Si C陶瓷预制体,Ti元素在金属熔体与陶瓷颗粒之间形成活性层,促进熔融金属润湿陶瓷,诱发界面反应的发生,形成自发浸渗。在自发浸渗过程中界面反应和元素相互扩散,导致复合材料的相组成和显微结构发生变化。  相似文献   

7.
陶瓷/铁基合金复合材料的研究进展   总被引:5,自引:1,他引:4  
综述陶瓷/铁基合金的发展现状,对目前国内外陶瓷/铁基合金复合材料的制备方法、3种常用陶瓷(Al_2O_3、SiC和TiC)与铁基合金在复合过程中的界面问题、网络陶瓷/铁基合金复合材料以及复合材料的摩擦磨损性能的研究新进展进行评述.结果表明:无压活化浸渗、陶瓷表面金属化处理以及适当控制界面反应是制备陶瓷/铁合金复合材料的有效方法;陶瓷/铁基合金复合材料的研究方向应集中在界面问题、陶瓷与金属内部的复合结构形式、制备工艺和摩擦磨损机理等几个方面.  相似文献   

8.
采用原位反应无压浸渗工艺,制备了Si C/Al双连续相复合材料,研究烧结温度对Si C/Al双连续相复合材料的导热性能的影响,观察Si C/Al双连续相复合材料的表面形貌。结果表明:Al合金熔体在无压下能渗入三维网状Si C多孔陶瓷孔隙,形成组织均匀具有网络贯穿结构的Si C/Al双连续相复合材料。浸渗温度对复合材料的导热系数影响很大,当浸渗温度为900、1000、1100和1200℃时,复合材料室温下的导热系数分别为167.4、160、154和152 W/(m·K),与浸渗温度900℃相比,浸渗温度1200℃复合材料室温下的导热系数下降了9%。因此,在保证浸渗完全的情况下,随着浸渗温度的升高,复合材料的导热性能越来越差,这主要是由于高温下熔融Al液与Si C陶瓷之间发生界面反应所致;适当地降低熔渗温度可以减缓界面反应的程度,从而提高复合材料的导热性能。本实验的最佳工艺条件为N2气氛,900℃保温3 h。  相似文献   

9.
分别采用熔渗硅(MSI)、前驱体裂解(PIP)技术制备4种C/C-SiC复合材料.在M2000型实验机上测试材料的摩擦磨损特性.结果表明:采用MSI制备的2种C/C-SiC摩擦因数高、不稳定,摩擦因数在0.404-0.906之间波动;随载荷增加,MSI-SiC质量分数为40.9%的材料B的摩擦因数变化幅度低于SiC质量分数18.9%的材料A的摩擦因数,但其随时间延长的波动幅度大;随时间延长和载荷增加,采用PIP制备的2种C/C-SiC材料的摩擦因数变化小,在0.08-0.14之间波动;其中,随载荷增加,PIP-SiC质量分数为18.0%的材料C的摩擦因数波动幅度稍大于SiC质量分数为6.0%的材料D的.EDAX分析表明:材料A的部分磨损表面未发现碳元素;而材料C磨损表面的碳硅摩尔比大于1,使其有足够的炭形成自润滑膜,从而降低材料的摩擦因数.SEM形貌表明:MSI技术制备的材料摩擦表而粗糙,未形成完整的摩擦膜,而采用PIP技术制备的材料摩擦表面较完整且致密.  相似文献   

10.
综述了C/C-SiC摩擦材料的研究现状,以及C/C-SiC摩擦材料的发展历程。详细分析C/C-SiC摩擦材料的摩擦磨损性能影响因素及机理,介绍了C/C-SiC摩擦材料的改性及应用现状,并对未来的研究重点进行了展望。  相似文献   

11.
C/C-SiC braking composites, based on reinforcement of carbon fibers and matrices of carbon and silicon carbide, were fabricated by warm compaction and in situ reaction process. The tribological characteristics of C/C-SiC braking composites under dry and wet conditions were investigated by means of MM-1000 type of friction testing machine. The influence of dry and wet conditions on the tribological characteristics of the C/C-SiC composites was ascertained. Under dry condition, C/C-SiC braking composites show superior tribological characteristics, including high coefficient of friction (0.38), good abrasive resistance (thickness loss is 1.10 μm per cycle) and steady breaking. The main wear mechanism is plastic deformation and abrasion caused by plough. Under wet condition, frictional films form on the worn surface. The coefficient of friction (0.35) could maintain mostly, and the thickness loss (0.70 μm per cycle) reduces to a certain extent. Furthermore, braking curves are steady and adhesion and oxidation are the main wear mechanisms.  相似文献   

12.
This study examines the friction and wear of ceramic matrix composites designed for use in automotive brake discs. The composites are produced by reinforcing a SiC matrix with carbon fibers using a liquid silicon infiltration method. C/C-SiC composites with two different compositions are fabricated to examine the compositional effect on the tribological properties. The tribological properties are evaluated using a scale dynamometer with a low-steel type friction material. The results show that the coefficient of friction is determined by the composition of the composite, which affects the propensity of friction film formation on the disc surface. A stable friction film on the disc surface also improves the wear resistance by diminishing the abrasive action of the disc. On the other hand, the friction film formation on the disc is affected by the applied pressure, and stable films are obtained at high pressures. This trend is prominent with discs with high Si content. However, both C/C/-SiC composites show superior performance in terms of the friction force oscillation, which is closely related to brake-induced vibration.  相似文献   

13.
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445 °C. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463 °C. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency.  相似文献   

14.
以无纬布/网胎0°/90°叠层穿刺预制体为增强体,采用化学气相渗(Chemical vapor infiltration,CVI)、树脂浸渍碳化(Polymer infiltration carbonization,PIC)与反应熔渗(Reactive melt infiltration,RMI)复合工艺制备穿刺C/C-SiC复合材料,研究其微观组织及在C2H2-O2焰中的烧蚀行为。结果表明:无纬布、穿刺纤维束由CVI+PIC制备的碳基体填充而形成致密C/C区域,RMI生成的SiC主要位于网胎层中,其含量37.3wt%。复合材料表面因过量硅化而形成了SiC富集层。烧蚀距离20mm、O2:C2H2=2:1时,烧蚀600s后材料X-Y、Z向线烧蚀率分别为:0.8×10-4 mm/s、3.6×10-4 mm/s,比PIP工艺制备C/C-SiC材料烧蚀率小一个数量级。烧蚀面SiC富集层保护及被动氧化作用是材料具有优异抗氧化烧蚀性能的主要原因。随烧蚀距离由20mm向10mm减小,复合材料烧蚀率先缓慢变化后快速增大,烧蚀率快速增长阶段复合材料发生主动氧化烧蚀。  相似文献   

15.
C/C坯体对RMI C/C—SiC复合材料组织的影响   总被引:4,自引:2,他引:4  
以PAN基炭纤维(Cf)针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍炭化(IC)方法制备了不同炭纤维增强炭基体的多孔C/C坯体,采用反应熔渗(RMI)法制备C/C—SiC复合材料,研究了渗Si前后坯体的密度和组织结构。结果表明:不同C/C坯体反应溶渗硅后复合材料的物相组成为SiC相、C相及单质Si相;密度低的坯体熔融渗硅后密度增加较多;密度的增加与开口孔隙度并不是单调增加的关系,IC处理的坯体开口孔隙度低,但渗硅后复合材料的密度增加较多;IC坯体中分布分散的树脂C易与熔渗Si反应,CVI坯体中的热解C仅表层与熔渗Si反应,在Cf和SiC之间有热解C存在;坯体密度相同时,IC处理的坯体中SiC量较多,单质Si相含量少且分散较好,而CVI坯体中SiC量较少,单质Si相的量较多;制备方法相同时,高密度的C/C坯体,渗硅后C相较多。  相似文献   

16.
多孔体制备工艺对C/C-SiC复合材料弯曲性能的影响   总被引:5,自引:1,他引:5  
以针刺整体炭毡为坯体,采用CVD和树脂浸渍/炭化混合法增密制备了4种C/C多孔体,然后熔硅浸渗C/C多孔体制备了C/C-SiC复合材料;研究了不同炭涂层、高温热处理对C/C-SiC复合材料弯曲强度和断裂方式的影响。结果表明:热解炭涂层可减少制备过程中炭纤维的损伤,具有适中的界面结合强度,使复合材料的弯曲强度达到161.5MPa,表现出良好的“假塑性”;适当选择高温热处理工艺可制备弯曲性能较高,具有一定“假塑性”的C/C-SiC复合材料。  相似文献   

17.
C/SiC volume ratios in carbon fiber-reinforced carbon-silicon carbide (Cf/C-SiC) composites may influence greatly mechanical and oxidation properties of the composites, but have not been well investigated yet. Herein, Cf/C-SiC composites with different C/SiC volume ratios were fabricated by chemical vapor infiltration (CVI) technique through alternating the thickness of a pyrocarbon (PyC) interlayer. The composites with C/SiC volume ratios of 0.37 and 0.84 exhibited the better comprehensive mechanical properties. The CS0.37 showed the highest flexural strength of 340.6 MPa, and CS0.84 had the maximum tensile strength of 139.1 MPa. The excellent mechanical properties were closely related to the relatively low C/SiC volume ratios and porosities, optimum interfacial bonding and reduced matrix micro-cracks. The composite with a low C/SiC volume ratio of 0.10 showed the best anti-oxidation performance due to its high SiC content. The oxidation mechanisms at 1100 °C and 1400 °C were discussed by considering the effect of the C/SiC volume ratios, pores and matrix micro-cracks, oxidation of carbon phase and SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号