首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
目的 以GCr15材料的6309型轴承内圆为研究对象,探究高转速超声磨削过程中超声辅助振动对磨粒运动轨迹、磨削后表面粗糙度、圆度以及微观形貌的影响规律。方法 基于超声内圆磨削磨粒切削轨迹及超声振幅与砂轮转速对轨迹影响的理论仿真,构建磨削去除量与磨削表面粗糙度的理论模型,通过对轴承内圆进行超声磨削试验,研究高转速(16 000~22 000 r/min)下各工艺参数对内圆表面质量的影响并验证理论粗糙度评价模型。结果 超声振幅的增大使磨粒与内圆接触轨迹变长,但随砂轮转速的提高,磨粒切削轨迹的密集程度也有所下降。振幅和砂轮转速的增大可使切削去除量增大、粗糙度降低,铬刚玉粒度100#陶瓷结合剂砂轮磨削GCr15轴承内圆后,其表面质量更有优势,单因素下表面质量变化趋势与理论分析结果相一致。结论 在相同磨削参数下,1.5 μm振幅超声磨削可使内圆圆度降至0.92 μm,粗糙度降至130.5 nm,与传统磨削相比,粗糙度最高减小了41.5%,圆度最高减小了52.6%。在高转速下,各因素按砂轮对磨削后表面质量的影响由大到小的顺序依次为砂轮转速、超声振幅、进给速度,当磨粒线速度超过41.8 m/s、进给速度超过600 mm/min、振幅超过1.5 μm时,表面质量呈下降趋势。  相似文献   

2.
通过单因素试验并结合响应曲面分析法,重点分析超声振动辅助电解磨削Hastelloy X内孔加工中主轴转速、超声振幅及磨头目数对孔内壁表面粗糙度的影响规律.结果表明:在选取的优化工艺参数范围内,超声振幅对超声辅助电解磨削表面粗糙度的影响最大,磨头目数次之,主轴转速最小.通过参数优化,在主轴转速10836 r/min、磨头目数1000、超声振幅3.3μm的条件下,可得到内壁表面粗糙度为Ra0.25μm的小孔,这为进一步优化复合加工参数及改善表面质量提供了依据.  相似文献   

3.
固结磨料研磨垫的磨粒粒径是影响其加工效率和表面质量,以及下阶段抛光过程的重要因素。使用5μm、14μm和30μm三种粒径的金刚石固结磨料研磨垫加工石英玻璃,分析磨粒粒径对工件表面质量、材料去除率、声发射信号、摩擦系数和磨屑的影响,并结合磨粒切深选择最佳磨粒粒径。结果表明:随着磨粒粒径增大,材料去除率和表面粗糙度值均增大,声发射信号的均值和振幅显著提高,摩擦系数到达稳定水平需要的时间延长。14μm粒径磨粒的切深分布接近石英玻璃的脆塑转变临界切深201.2nm。选用粒径14μm的金刚石固结磨料研磨垫加工石英玻璃,其材料去除率为5.65μm/min,石英玻璃的表面粗糙度值Ra为66.8nm,满足硬脆材料的高效、高质量研磨要求。  相似文献   

4.
耿其东  李春燕 《表面技术》2018,47(7):104-111
目的提高蓝宝石研磨后的表面质量。方法采用超声研磨与磁力研磨相结合的工艺方法,对蓝宝石进行研磨加工。超声研磨采用恒流超声电源及等效阻抗控制进给方式,通过改变不同阻抗阈值获得不同的加工表面。磁力研磨采用永磁体及磁场旋转的运动方式,通过调节转速、更换磨粒大小获得不同的加工表面。以旋转磁场速度、磁性磨粒大小、阻抗阈值作为主要工艺参数,以表面粗糙度值R_p、R_v、R_z、R_a为评价指标,设计相应的工艺试验。结果采用超声磁力研磨加工方法,当旋转磁场转速为1200 r/min、磁性磨粒目数为120目、阻抗阈值为330?时,得到了蓝宝石加工表面粗糙度值分别为:R_p=1.992μm,R_v=1.313μm,R_z=3.305μm,R_a=0.055μm。结论采用超声磁力研磨工艺加工蓝宝石时,在旋转磁场转速及阻抗阈值一定的情况下,磁性磨粒大小对表面粗糙度值的影响较显著;在磁性磨粒大小一致的情况下,旋转磁场转速及阻抗阈值主要对表面粗糙度值Rp及Rv的影响较大。  相似文献   

5.
目的改善镍基合金异型管表面质量,降低表面粗糙度。方法在内置辅助磁极磁力研磨基础上添加轴向超声振动,促使磁力研磨粒子对管件内表面进行轴向划擦、刻划作用。采用响应面法对试验进行3因素3水平方法设计,建立参数优化三维数学模型,分析超声频率、超声振幅、主轴转速在两因素交互作用下,对异型管内壁表面质量、表面粗糙度的影响,并得出试验最佳参数组合。结果响应面法优化设计在超声频率19 kHz、超声振幅19μm、主轴转速1200 r/min条件下的加工效果最佳。在优化工艺参数下进行超声复合磁力研磨试验,加工30 min后,管件内壁表面粗糙度由原始2.4μm降至0.31μm,管件内表面残余拉应力由+49MPa转变为残余压应力?47MPa。结论在内置辅助磁极磁力研磨基础上添加超声轴向振动,使得研磨粒子翻滚加剧,研磨轨迹复杂化,有效改善了管件内壁表面粗糙度和表面加工质量。响应面法能够对试验结果进行优化参数数学建模设计,拟合出了最佳的加工参数组合,良好的应力状态有效地提高了工件的疲劳强度。  相似文献   

6.
朱子俊  刘顺  韩冰  陈燕 《表面技术》2020,49(4):74-80
目的探究超声振动复合研磨对光学玻璃研磨可行性,通过响应面法寻求超声振动研磨最优的工艺参数组合。方法在传统研磨装置基础上,添加超声振动装置、蠕动泵、旋转工作台构成超声振动复合研磨装置。添加轴向超声高频振动提高研磨效率,添加旋转工作台提高研磨均匀性,添加蠕动泵便于循环和更新研磨液。利用响应面法优化超声振动复合研磨加工中的主轴转速、振动频率、加工间隙三个变量参数,并进行实验研究,可得出两两变量关联度,从而得出研磨中影响最大的因素。结果通过响应面优化后得到超声振动复合研磨最佳工艺参数为主轴转速1000 r/min、加工间隙0.4 mm、振动频率12 kHz,主轴转速和间隙参数对工件表面研磨加工的影响较大。经25 min研磨,无超声振动的传统研磨方法使表面粗糙度值Ra从0.3μm下降到0.1μm;增加超声振动复合研磨使表面粗糙度值Ra从0.3μm下降到0.04μm。结论经超声振动复合研磨后,光学玻璃表面存在的凹坑、凸起均得到了有效去除,表面粗糙度值下降快,表面形貌均匀、平整。  相似文献   

7.
针对航天用SiC反射镜的低加工效率、表面质量差等难题,采用超声振动辅助磨削技术对其进行工艺实验研究。首先,通过选用树脂结合剂金刚石杯型砂轮并采取栅线式磨削研究不同工艺参数对磨削效率的影响关系。然后采取螺旋式磨削进行正交实验探究超声振幅、进给速度、砂轮转速、磨削深度对表面粗糙度的影响,并采用极差法分析探究各因素对工件磨削质量影响程度的大小。研究结果表明:当超声振幅5μm,进给速度80mm/min,砂轮转速6000r/min,磨削深度2μm时可获得表面粗糙度Ra97nm的已加工表面。  相似文献   

8.
针对SiCp/Al材料传统研磨方法加工困难,研磨工具磨损快,加工后难以获得高质量表面等问题,采用超声振动研磨加工方法可以显著改善其加工效果。通过对单磨粒的超声振动轨迹进行分析,得出其运动轨迹为空间椭圆形,可实现磨粒与工件间歇性的接触加工;采用树脂结合剂金刚石磨头对SiC体积分数为40%的SiCp/Al材料进行超声振动研磨加工试验,在不同的主轴转速n、进给速度v和研磨深度ap以及磨料粒度d下,利用单因素试验法对工件进行研磨,检测加工后工件表面粗糙度,得出各工艺参数对工件表面粗糙度Sa值的影响规律。结果表明:超声振动研磨后的工件表面粗糙度Sa值相较于普通研磨后的79 nm下降为45 nm;超声振动研磨后工件表面粗糙度随n的增大先减小后增大,转速为1 800 r/min时,粗糙度值最小;工件表面粗糙度随v和ap的增大而增大,随着d的减小而减小。并得出试验参数内的最优参数组合为:n=1 800 r/min,v=5 mm/min,ap=1 μm,d=4.5 μm。   相似文献   

9.
超声复合磁力研磨加工镍基合金GH4169异形管   总被引:1,自引:0,他引:1  
为解决镍基合金GH4169异型管内壁难研磨及研磨不均匀问题,采用超声复合磁力研磨光整加工方法进行试验。分析在超声复合磁力研磨条件下,主轴转速、加工间隙、超声频率和超声振幅对异形管内壁表面质量的影响。结果表明:在超声轴向频率为19 kHz、振幅19 μm,主轴转速1000 r/min,磁性磨粒平均粒径250 μm,加工间隙2 mm加工条件下,加工30 min后,管件内壁表面粗糙度Ra由原始的2.4 μm降至0.31 μm。通过在管件内部添加圆柱形辅助磁极,使得内外两磁极形成闭合磁场回路,增加磁场力的作用。辅助磁极连接高频轴向超声振动,使得吸附在磁极上的磁性磨粒在旋转运动和轴向高频振动复合作用下划擦、研磨管件内表面。由于研磨轨迹发生交叉复杂化,使得异型管内壁研磨后的表面质量和表面粗糙度得到明显提高;管件内壁表面残余应力由拉应力+52 MPa转变为压应力-48 MPa,表面应力状态得到较好的改善。  相似文献   

10.
为提高金刚石刀具的精度,理论分析机械研磨法加工金刚石前刀面的模型,并实验研究研磨盘表面质量和研磨晶向对金刚石刀具前刀面粗糙度的影响。结果表明:研磨盘经过充分平整后,刀具前刀面的粗糙度Ra由1.308 nm下降到0.920 nm。在(110)晶面精细研磨时,<100>晶向研磨后的表面粗糙度为0.540 nm,<110>晶向研磨后的表面粗糙度为0.430 nm,实现了对金刚石刀具的精密研磨。   相似文献   

11.
在游离磨料研磨过程中,研磨的驱动方式及工艺参数等直接影响加工后工件的平面度和表面粗糙度。为了探究基于旋摆式驱动的游离磨料研磨工艺参数对MPCVD多晶金刚石片平整化的影响,建立旋摆式驱动平面研磨过程中的单磨粒运动学模型,根据实际研磨过程采用多磨粒随机分布模型进行计算机仿真计算,引入多磨粒轨迹的均匀性离散系数对磨粒轨迹均匀性进行分析。结果表明:当转速比取值等于0.5时,磨粒轨迹离散系数最大;当转速比小于等于0.5时,离散系数与转速比为正相关;研磨盘摆动弧线的弦长大于金刚石片直径时,磨粒相对于整个金刚石片表面的运动轨迹分布较为均匀;计算机仿真计算得到了研磨最优参数,并通过2英寸MPCVD多晶金刚石片研磨试验验证了仿真结果的有效性。研磨后金刚石片表面PV值为2.4 μm,表面粗糙度Ra达到139 nm,材料去除率dMRR为10.1 μm/h。   相似文献   

12.
目的 针对镍基高温合金进行旋转超声磁力研磨加工试验,通过响应面法分析主轴转速、超声频率、超声振幅、粒径交互作用对工件表面的影响。方法 在磁力研磨基础上添加旋转超声高频轴向机械振动,通过磁性研磨粒子对工件表面的垂直冲击,增加研磨压力以及磁性研磨粒子的翻滚动作,完成旋转超声辅助磁力研磨,测定表面粗糙度、表面残余应力等性能参数。采用响应面法分析主轴转速、磁性研磨粒子粒径和超声频率的交互作用对试验的影响规律,拟合出最佳工艺参数条件。结果 在试验条件下得出,主轴转速1000 r/min、磁性研磨粒子粒径250 μm、超声频率19 kHz、超声振幅19 μm的加工工艺组合效果最佳,并与响应面法优化参数后的结果相一致。根据优化参数进行试验,经过40 min研磨加工后,Ra从加工前的3.2 μm降至0.072 μm,工件表面各位置粗糙度均匀,表面质量较好。工件内部残余拉应力从+51 MPa转变为残余压应力-121 MPa。结论 旋转超声辅助磁力研磨加工后,工件表面均匀性提高,原始工件表面的凹坑、凸起、表面微裂纹等缺陷被完全去除,表面形貌和表面质量较好。该工艺加工效率较高,工件内部可得到良好的应力状态。  相似文献   

13.
该试验研究为提高玉石材料表面加工质量和加工效率,去除工件表面微裂纹、褶皱、划痕,提出旋转超声辅助磁力研磨加工技术对玉石表面进行光整加工的方法。对比了普通研磨和旋转超声辅助磁力研磨加工后玉石表面质量,分析了超声波频率、磁性研磨头直径和主轴转速对加工质量的影响效果。试验结果表明:当主轴转速1500r/min、研磨头直径为30mm,采用19 k Hz高频振动频率对玉石表面研磨30min时,玉石表面研磨的表面粗糙度及表面形貌效果最好,玉石表面粗糙度从0.89μm降至0.13μm,有效的提高了玉石表面质量。  相似文献   

14.
为解决粗磨粒金刚石砂轮磨块的修整问题,使用W-Mo-Cr合金材料作为修整工具对磨粒粒度尺寸为297~420μm的金刚石砂轮磨块进行修整,修整前后分别测量砂轮表面磨粒的等高性和磨粒的微观形貌,并且分别用修整前后的砂轮磨块进行WC硬质合金的磨削试验。结果表明:W-Mo-Cr合金材料对金刚石砂轮修整效率高,修整后砂轮表面磨粒的等高性提升了60%左右。利用修整后的金刚石砂轮磨削WC硬质合金,工件表面质量得到很大的改善,表面粗糙度达到Ra0.149μm。   相似文献   

15.
为了满足蓝宝石晶片高效低损伤的加工要求,采用亲水性固结磨料研磨垫研磨蓝宝石晶片的工艺,研究基体中碳化硅粒度尺寸、基体类型、金刚石粒度尺寸及研磨液中磨料4个因素对材料去除率和表面粗糙度的影响,并综合优化获得高加工效率和优表面质量的工艺参数。实验结果表明:基体中碳化硅粒度尺寸为10 μm、基体类型为Ⅱ、研磨垫采用F公司粒度尺寸为35~45 μm的金刚石、研磨液中磨料的粒度尺寸为5 μm的碳化硅为最优工艺组合,亲水性固结磨料研磨蓝宝石的材料去除率为431.2 nm/min,表面粗糙度值为Ra 0.140 2 μm。   相似文献   

16.
钛合金超声振动研磨表面粗糙度特性试验研究   总被引:1,自引:0,他引:1  
根据超声振动研磨加工原理,采用自行研制的超声振动研磨装置对塑性难加工材料钛合金(TC4)表面粗糙度特性进行了试验研究。试验采用单因素法,分别研究了工件转速、超声振动振幅以及磨料粒度对工件表面粗糙度的影响规律。试验结果表明:超声振动的附加在一定程度上降低了工件表面粗糙度。所获得的结论对超声振动研磨中加工参数的选择具有一定的参考价值。  相似文献   

17.
本文通过不同振动模式下的Al2O3工程陶瓷普通与超声研磨对比试验,利用正交回归分析方法获得了最优研磨参数,探讨了各研磨参数对工件表面粗糙度影响的主次顺序。并分析研究了工件转速、进给速度、油石粒度、研磨切深、发生器功率等不同研磨参数对表面粗糙度的影响规律。结果表明,超声振动研磨可明显减小表面粗糙度值,提高工件表面质量,是适合工程陶瓷等硬脆材料的一种高效加工方法。  相似文献   

18.
针对传统磁力研磨对长径较大的TC4薄壁细长管内表面进行精密抛光时,研磨效率低、材料去除量小且加工后表面质量差的问题,提出了一种超声振动辅助磁力研磨技术。采用超声振动发生装置辅助磁力研磨,通过对辅助磁极添加轴向振动,实现对TC4薄壁细长管内表面的高效精密抛光。对比添加超声振动前后工件的表面质量以及研磨效率的变化,分析了不同振动频率对工件的表面粗糙度值以及材料去除量的影响。结果表明:经过40min的研磨加工,添加了超声振动后工件的表面质量得到明显改善,表面粗糙度值由Ra1.4μm降至Ra0.25μm,材料去除量可达到50mg,高频率的振动有利于提高研磨效率以及改善工件表面的加工质量。  相似文献   

19.
目的优化安全阀关闭件研磨工艺参数,提高安全阀密封面研磨质量。方法采用Al2O3砂纸为磨具,通过正交试验研究了磨粒细度、研磨时间、研磨转速、研磨压力对阀座和阀瓣表面粗糙度的影响规律。采用粗糙度测量仪对阀座和阀瓣的表面粗糙度进行检测,初步获得了较好的研磨工艺参数。采用MATLAB中BP神经网络解决非线性映射逼近问题,建立表面粗糙度预测模型,分析安全阀研磨工艺实验得来的16组真实样本数据,并对不同工艺参数下的粗糙度进行预测。结果通过正交试验可以初步获得较好的研磨工艺参数,分别是:磨粒细度1500目、研磨压力100 N、研磨转速100 r/min、研磨时间10 min。进一步设计更全面的正交试验,验证粗糙度模型的预测结果,得到最好的研磨方案是:砂纸细度1500目、研磨压力120 N、研磨转速80 r/min、研磨时间12 min。结论粗糙度预测模型能够很好地预测表面粗糙度,并得到最佳工艺参数,表面粗糙度可以降低到0.074μm,有效地提高了研磨质量。  相似文献   

20.
针对传统研磨方法加工单晶碳化硅晶片存在的材料去除率低、磨料易团聚等问题,本文提出超声振动辅助研磨方法,并探究不同工艺参数(转速、磨料质量分数、抛光压力、磨料粒径)对单晶碳化硅晶片研磨效率和表面质量的影响规律。试验结果和理论分析表明:超声振动有效提高了单晶碳化硅晶片研磨的材料去除率;在研磨盘转速为50 r/min,磨料质量分数为2.5%,压力为0.015 MPa,磨料粒径为0.5 μm时超声振动对材料去除率的提升效果最明显,分别提升23.4%,33.8%,72.3%,184.2%。同时,通过对研磨过程中表面粗糙度的追踪检测,能确定不同粒径磨料超声振动辅助研磨的最佳时间。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号