首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对30CrNiMoNb钢不同奥氏体化温度下析出相进行了研究,结果表明,钢在热轧态时NbC大量析出有效地防止晶粒长大,使基材获得细小原始奥氏体晶粒。钢淬火时,当淬火温度低于1050 ℃时,NbC析出相部分固溶于奥氏体,但未固溶NbC可起到钉扎作用,抑制奥氏体晶粒长大,保证30CrNiMoNb钢获得细晶组织;当温度高于1050 ℃,NbC部分固溶于奥氏体,未固溶部分出现明显长大,对奥氏体晶粒的钉扎作用减弱,导致奥氏体晶粒长大。  相似文献   

2.
通过金相显微分析方法研究了3种不同成分的低碳微合金钢再加热奥氏体化后晶粒粗化行为,探讨了第二相粒子对奥氏体晶粒的钉扎作用.结果表明:3种钢的粗化温度分别为:A钢1100℃,B和C钢为1050℃.在900~1000℃,第二相粒子数量较多,奥氏体晶界几乎被完全钉扎,奥氏体晶粒的粗化速率较低.温度继续升高,第二相粒子数量下降,奥氏体晶粒开始异常长大.  相似文献   

3.
对30CrNiMoNb钢不同奥氏体化温度下析出相进行了研究,结果表明,钢在热轧态时Nb C大量析出有效地防止晶粒长大,使基材获得细小原始奥氏体晶粒。钢淬火时,当淬火温度低于1050℃时,Nb C析出相部分固溶于奥氏体,但未固溶Nb C可起到钉扎作用,抑制奥氏体晶粒长大,保证30CrNiMoNb钢获得细晶组织;当温度高于1050℃,Nb C部分固溶于奥氏体,未固溶部分出现明显长大,对奥氏体晶粒的钉扎作用减弱,导致奥氏体晶粒长大。  相似文献   

4.
通过金相观察研究了加热温度对2.25Cr-1Mo-0.25V钢奥氏体晶粒长大规律的影响.结果表明,在1000℃以下晶粒长大不明显,加热温度超过1000℃晶粒快速长大,在1300℃晶粒完全粗化,这种钢的晶粒粗化温度为1000℃.第二相粒子在较低加热温度下不溶解,这些未溶解的第二相质点可起到对晶界迁移的钉扎作用.随着加热温度的升高,部分第二相粒子开始溶解,使其阻碍奥氏体晶粒长大的钉扎作用减弱.第二相质点的尺寸和体积分数的比值决定了奥氏体晶粒的粗化程度,一旦发生解钉现象,奥氏体晶粒快速长大.  相似文献   

5.
研究了锻造加热温度(1050~1200 ℃)和锻造保温时间(40~120 min)对20Cr2Ni4A钢经相同锻造变形后锻后奥氏体晶粒长大行为的影响,并对不同锻造加热温度下的淬火态20Cr2Ni4A钢进行了力学性能检测。结果表明,锻后20Cr2Ni4A钢奥氏体晶粒长大规律在低于1150 ℃仍然符合Beck模型,模型计算值与实际测量值相吻合。随着锻造加热温度的升高,奥氏体晶粒长大呈现先缓慢增加后快速增加的规律。当锻造加热温度超过1150 ℃时,第二相粒子大量溶解,对晶界的钉扎作用急剧减弱。综合考虑20Cr2Ni4A钢锻后奥氏体晶粒尺寸均匀性、热处理后力学性能测试结果及可锻性因素,确定最优锻造加热温度为1150 ℃。  相似文献   

6.
研究了不同Nb含量的20CrMnTiH齿轮钢的奥氏体晶粒长大行为。采用光学显微镜和透射电镜分析了试验钢分别加热到950~1200℃奥氏体化保温1 h后的奥氏体晶粒变化和析出相情况。结果表明,随着Nb含量的增加,晶粒粗化温度不断提高。保温时间为1 h的情况下,每增加0.03%Nb,晶粒粗化温度提高50℃;超过晶粒粗化温度后,含Nb析出相的数量因溶解而大大降低,对晶界的钉扎作用消失,奥氏体晶粒长大。  相似文献   

7.
为研究16MnCr5钢热轧盘条改制过程中的球化退火对其奥氏体晶粒度的影响,对热轧盘条试样及分别在700、720、740、760、780℃保温5 h的等温球化退火试样进行940±5℃保温1 h水淬处理,测试试样的奥氏体晶粒度并对比分析。结果表明,通过轧制过程采用“双高”工艺(加热温度1200~1250℃,精轧温度950~980℃)及800~600℃之间快冷(采用风冷,冷却速度≥10℃·s-1),保证铝、氮原子处于固溶态,晶粒度检测前的热处理过程中AlN均匀细小析出,使得16MnCr5钢奥氏体晶粒细小均匀。当在700、720℃进行球化退火时,AlN质点均匀细小析出,虽然发生Ostwald熟化长大,但仍小于临界半径,奥氏体晶粒仍细小均匀;随着退火温度的进一步升高,第二相粒子发生Ostwald熟化长大,局部区域的第二相粒子超过其临界半径,局部奥氏体晶粒异常长大而出现混晶。实际生产中,为获得均匀细小的奥氏体晶粒,同时获得良好的球化组织及力学性能,16MnCr5钢采用720℃进行球化退火。通过以上控制轧制过程及球化退火工艺,可实现16MnCr5钢的奥氏体晶粒度7.5~7级,满...  相似文献   

8.
研究了亚温淬火工艺中淬火加热温度、两相区淬火温度、回火温度等参数对试制的国产9%Ni钢组织的影响,通过试验分析确定了实验室最佳亚温淬火工艺,即:淬火加热温度宜为800℃,两相区淬火温度宜为680℃,回火温度宜为580℃。对亚温淬火热处理中容易出现的问题及其与QT处理的不同进行了讨论。研究表明,亚温淬火处理中出现的带状组织是由于两相区淬火加热保温时间过长引起元素偏聚造成的,将亚温淬火保温时间控制在30 min以内,可避免带状组织出现。亚温淬火处理可获得比调质处理更细小的晶粒及更细的组织,逆转变奥氏体量增多且分布更加弥散均匀。  相似文献   

9.
采用真空感应炉冶炼了试验钢,并进行了不同工艺的热处理。采用光学显微镜、扫描电镜对组织进行了观察,对洛氏硬度进行了检测。结果表明,试验钢淬火组织主要为细小的板条马氏体+大量残余奥氏体+未溶析出相,经-80℃深冷处理、低温回火后残余奥氏体含量逐步减少;随着淬火温度提高,回火马氏体基体逐渐粗化,第二相粒子数量逐渐减少,尺寸也减小;1030℃淬火并深冷处理后在150℃回火,试验钢获得最高的硬度,随着回火温度提高,基体组织逐渐由回火马氏体转变为回火屈氏体再到回火索氏体,第二相粒子逐渐粗化;硬度值先几乎不变,当温度超过450℃硬度值迅速下降,650℃时降低至34HRC。  相似文献   

10.
研究了亚温淬火温度和回火温度对45钢组织性能的影响.结果表明,在760~840℃,随淬火温度升高,45钢的强度、硬度、韧性先升后降,45钢亚温淬火后在350℃以上回火时其强韧性比较好,810℃亚温淬火后得到细小铁素体与细小的板条状马氏体组织,其原因与奥氏体晶粒细化及铁素体的分布状态有关.810℃淬火+550℃回火可获得比较好的强韧性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号