首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Dielectric properties of sintered aluminum nitride   总被引:1,自引:0,他引:1  
In the present work, the effects of sintering additives on dielectric loss tangent (tan δ) of AlN ceramics were explored. Different amounts of Y2O3 and Mg3N2 were respectively added as sintering additives to AlN powders, and pressureless-sintering was performed at 1900 °C for 2 h in a nitrogen flow atmosphere. The resulted AlN ceramics became denser due to the addition of Mg3N2, and nearly fully dense sample was obtained with a relative density of 0.998. tan δ decreased with increasing Mg3N2 amount and it was found to depend on the density of the AlN ceramic. The best tan δ value of 3.9 × 10−4 was obtained by adding 1 mol% of Y2O3 and Mg3N2 together.  相似文献   

2.
In the present study,(Fe,Cr)_3Al/20 vol% Al_2O_3 nanocomposite was prepared through mechanochemical reactions during ball milling and successfully bulked using a combination of cold isostatic press and sintering at 1400 ℃ for 1 h. Two processing approaches were utilized to produce(Fe,Cr)_3Al/Al_2O_3 nanocomposite: The first was milling of Fe, Cr,Al and Fe_2O_3, while the second one was milling of Fe, Cr, Al and Cr_2O_3, both in stoichiometric condition, to synthesize(Fe,Cr)_3Al/20 vol% Al_2O_3. Structural changes of powder particles during mechanical alloying were studied by X-ray diffraction. The microstructure and the morphology of powder particles and bulk samples were also studied by scanning electron microscopy and transmission electron microscopy. Microstructural analysis showed that mechanochemical reactions took place during milling, and nanometric Al_2O_3 was uniformly distributed in the matrix. The results also showed that the second approach required a considerably higher milling time to produce(Fe,Cr)_3Al/Al_2O_3 nanocomposite, as compared to the first one. For this reason, bulk samples were produced from the synthesized nanocomposite in the first approach. The microstructure of the sintered samples consisted of a network structure of(Fe,Cr)_3Al and Al_2O_3 phases with superior mechanical properties.  相似文献   

3.
The synthesis of elevated-temperature intermetallic powders was carried out using a novel solid–liquid reaction milling technique. As opposed to the conventional mechanical milling, the direct formation of nanometer-sized elevated-temperature intermetallic powders such as Fe1.3Sn and Fe3Sn2, at relatively low temperatures and an enhanced solid solubility extension of iron in lead were realized.  相似文献   

4.
Carbon nanofiber(CNF)-reinforced aluminum-matrix composites were fabricated via ball milling and spark plasma sintering(SPS), SPS followed by hot extrusion and powder extrusion. Two mixing conditions of CNF and aluminum powder were adopted: milling at 90 rpm and milling at 200 rpm. After milling at 90 rpm, the mixed powder was sintered using SPS at 560 °C. The composite was then extruded at 500 °C at an extrusion ratio of 9. Composites were also fabricated via powder extrusion of powder milled at 200 rpm and 550 °C with an extrusion ratio of 9(R9) or 16(R16). The thermal conductivity and tensile properties of the resultant composites were evaluated. Anisotropic thermal conductivity was observed even in the sintered products. The anisotropy could be controlled via hot extrusion. The thermal conductivity of composites fabricated via powder extrusion was higher than those fabricated using other methods. However, in the case of specimens with a CNF volume fraction of 4.0%, the thermal conductivity of the composite fabricated via SPS and hot extrusion was the highest. The highest thermal conductivity of 4.0% CNF-reinforced composite is attributable to networking and percolation of CNFs. The effect of the fabrication route on the tensile strength and ductility was also investigated. Tensile strengths of the R9 composites were the highest. By contrast, the R16 composites prepared under long heating duration exhibited high ductility at CNF volume fractions of 2.0% and 5.0%. The microstructures of composites and fracture surfaces were observed in detail, and fracture process was elucidated. The results revealed that controlling the heating and plastic deformation during extrusion will yield strong and ductile composites.  相似文献   

5.
Here we report the effects of nano-Y_2O_3 addition,sintering atmosphere and time during on the fabrication of PM duplex and ferritic stainless steels composites by dual-drive planetary milling of elemental Fe,Cr and Ni powders followed by conventional pressureless sintering.Yttria-free and yttria-dispersed duplex and ferritic stainless steels are fabricated by conventional sintering at 1000,1200 and 1400 ℃ temperatures under argon atmosphere.In another set of experiment,yttria-free and yttria-dispersed duplex and ferritic stainless steels are consolidated at 1000 ℃ for 1 h under nitrogen atmosphere to study the effect of sintering atmosphere.It has been found that densities of duplex and yttriadispersed duplex stainless steel increase from 71%to 91%and 78%to 94%,respectively,with the increase in sintering temperature.Similarly,hardness value increases from 257 to 567 HV_(25) in case of duplex,and from 332 to 576 HV_(25) in yttria-dispersed duplex stainless steel.X-ray diffraction analysis shows the domination of more intense austenite phase than ferrite at higher sintering temperature and also in nitrogen atmosphere.It is also evident that addition of yttria enhances phase transformation from α-Fe to γ-Fe.Duplex and yttria-dispersed duplex stainless steels exhibit the maximum compressive yield strength of 360 and 312 MPa,respectively.  相似文献   

6.
采用电弧离子镀(AIP)技术在镍基单晶高温合金基体上制备了NiCoCrAlYSiB涂层(普通涂层)和(Ni-CoCrAlYSiB+AlSiY)复合涂层,研究了高温合金基体与2种涂层分别在900和700℃下的涂盐(Na2SO4+K2SO4和Na2SO4+NaCl)热腐蚀行为.结果表明:高温(900℃)热腐蚀条件下,基体合金表面主要生成NiO;普通涂层表面主要生成Cr2O3,而且涂层内部出现内氧化和内硫化现象;复合涂层表面主要生成Al2O3,外层出现程度较轻的内氧化,涂层表层Al含量仍然较高,维持表面Al2O3膜的形成和修复.低温(700℃)热腐蚀条件下,基体合金表面主要生成NiO;普通涂层表面主要生成Cr2O3,涂层内部出现严重的内氧化;复合涂层表面也出现了内氧化,高Cr的内层未受腐蚀,有助于提高涂层的抗腐蚀性能.  相似文献   

7.
Porous TiAl_3 intermetallics were fabricated through vacuum reactive sintering from Ti–75 Al at.% elemental powder mixture. The phase compositions, expansion behaviors, pore characteristics and microstructure evolution of TiAl_3 intermetallics were investigated, and the pore formation mechanism was also proposed. It was found that the actual temperature of compacts showed an acute climb from 668 to 1244 °C in 166 s, while the furnace temperature maintained the linear growth of 5 °C/min, which indicated that an obvious thermal explosion(TE) reaction occurred during sintering,and only single-phase TiAl_3 intermetallic was synthesized in TE products. The open porosity increased from 22.2(green compact) to 32.8% after reactive diffusion sintering at 600 °C and rised to 58.7% after TE, then decreased to 51.2% after high-temperature homogenization at 1100 °C. Therefore, TE reaction is the dominated pore formation mechanism of porous TiAl_3 intermetallics. The pore evolution in porous TiAl_3 intermetallics occurred by the following mechanisms:certain intergranular pores remained among powder particles of green compact, then low-temperature sintering resulted in a further increase in porosity due to the Kirkendall effect. Moreover, TE reaction gave rise to a dramatic volume expansion because of the rapid increase in temperature, and high-temperature sintering caused densification and a slight shrinkage.  相似文献   

8.
Effects of precursor milling on phase evolution and morphology of mullite (3Al2O3·2SiO2) processed by solid-state reaction have been investigated. Alumina and silica powders were used as starting materials and milling was taken place in a medium energy conventional ball mill and a high-energy planetary ball mill. Milling in a conventional ball mill although decreases mullite formation temperature by 200 °C, but does not considerably change mullite phase morphology. Use of a planetary ball mill after 40 h of milling showed to be much more effective in activating the oxide precursors, and mullitization temperature was reduced to below 900 °C. Whisker like mullite was formed after sintering at 1450 °C for 2 h and volume fraction of this structure was increased by increasing the milling time. XRD results showed that samples mechanically activated for 20 h in the planetary ball mill were fully transformed to mullite after sintering at 1450 °C, whereas Al2O3 and SiO2 phases were still detected in the samples milled in the conventional ball mill for 20 h and then sintered at the same conditions.  相似文献   

9.
曹磊  张俊  谢跃煌  梁加淼  张德良 《焊接学报》2018,39(12):119-124
采用放电等离子体扩散焊接技术,以Ti/Ni/Ti箔为中间层,实现了Ti48Al2Cr2Nb合金之间的扩散连接. 研究了焊接时间和温度对接头显微组织的影响. 结果表明,950 ℃时,保温15 min,中间层和基体中元素互扩散有限;保温时间延长到30 min,中间层在接头处扩散均匀. 在相同保温时间30 min的条件下,900 ℃和950 ℃得到的接头界面存在分层,各个层的主要物相都是α2相,仅最内层存在α-Ti. 升高温度到1 000 ℃和1 050 ℃,接头界面分层消失,显微组织相似,都是由粗大的α2相和固溶了少量Ni原子,Nb原子,Cr原子的α2相组成. 放电等离子体烧结(SPS)对接头处的元素扩散有促进作用,尤其是Ni元素,使得接头内部没有TiNi和TiAlNi金属间化合物生成.  相似文献   

10.
Powder mixture of ball-milled aluminium and functionalized multi-walled carbon nanotubes was compacted via spark plasma sintering(SPS) to study effects of sintering temperature and heating rate. An increase in sintering temperature led to an increase in crystallite size and density, whereas an increase in heating rate exerted the opposite effect. The crystallite size and relative density increased by 85.0% and 14.3%, respectively, upon increasing the sintering temperature from 400 to 600 °C, whereas increasing the heating rate from 25 to 100 °C/min led to respective reduction by 30.0% of crystallite size and 1.8% of relative density. The total punch displacement during SPS for the nanocomposite sintered at 600 °C(1.96 mm) was much higher than that of the sample sintered at 400 °C(1.02 mm) confirming positive impact of high sintering temperature on densification behaviour. The maximum improvement in mechanical properties was exhibited by the nanocomposite sintered at 600 °C at a heating rate of 50 °C/min displaying microhardness of 81 ± 3.6 VHN and elastic modulus of 89 ± 5.3 GPa. The nanocomposites consolidated at 400 °C and 100 °C/min, in spite of having relatively smaller crystallite size, exhibited poor mechanical properties indicating the detrimental effect of porosity on the mechanical properties.  相似文献   

11.
High-performance Al–Cu–Mg alloy was fabricated by high-energy ball milling, sintering, and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Results show that the formation of liquid phase during sintering promotes the densification of the aluminum powders. A97.1 % theoretical density is achieved in this alloy after sintering. The material shows excellent mechanical properties after extrusion and heat treatment. The ultimate tensile strength and yield strength of the extruded samples with heat treatment are 613 and 465 MPa, respectively.  相似文献   

12.
In this study, the microstructure, mechanical properties and corrosion behaviors of a Zn–1.6 Mg(wt%) alloy during multipass rotary die equal channel angle pressing(RD-ECAP) processing at 150 °C were systematically investigated. The results indicated that a Zn + Mg_2 Zn_(11) + MgZn_2 ternary eutectic structure was formed in as-cast Zn–Mg alloy. After ECAP, the primary Zn matrix turned to fine dynamic recrystallization(DRX) grains, and the network-shaped eutectic structure was crushed into fine particles and blended with DRX grains. Owing to the refined microstructure, dispersed eutectic structure and dynamically precipitated precipitates, the 8 p-ECAP alloy possessed the optimal mechanical properties with ultimate tensile strength of 474 MPa and elongation of 7%. Moreover, the electrochemical results showed that the ECAP alloys exhibited similar corrosion rates with that of as-cast alloys in simulated body fluid, which suggests that a high-strength Zn–Mg alloy was successfully developed without sacrifice of the corrosion resistance.  相似文献   

13.
采用正交试验方法研究热压压力、烧结温度和Y2O3含量等3个因素对铁基胎体硬度、致密度、抗弯强度和断口微观形貌等的影响,并获得较优的烧结工艺参数。在此基础上,制备含Y2O3的铁基金刚石工具,并对其断口形貌、耐磨性和锋利度等进行检测及分析。结果表明:含Y2O3的铁基结合剂胎体,其相对密度和硬度的影响因素次序为Y2O3含量>烧结温度>热压压力,抗弯强度的影响因素次序为烧结温度>Y2O3含量>热压压力;且Y2O3能促进铁基金刚石胎体组织的致密化,降低其烧结温度。在烧结温度为780 ℃、热压压力为51 kN的较优烧结工艺下,适量的Y2O3能使金刚石工具的孔隙率减小、黏结状况改善,并增强黏结剂对金刚石磨粒的把持能力。   相似文献   

14.
采用机械混粉、冷等静压成形、烧结、热挤压、轧制、拉拔、中间热处理等工艺集成的粉末冶金方法制备了3种含有不同平均粒径的SnO_2的Ag/SnO_2(10),探讨了SnO_2颗粒大小对Ag/SnO2(10)显微组织、密度、力学性能和电学性能的影响。结果表明,SnO_2粉末越细,表面活性越高,越容易团聚。脆性相SnO_2在加工过程中有破碎现象。随着SnO_2颗粒尺寸的减少,材料的密度、抗拉强度、硬度和电阻率逐渐上升。  相似文献   

15.
In this study, two powder consolidation techniques, equal channel angular pressing (ECAP) and extrusion, were utilized to consolidate attritioned aluminum powder and Al-5?vol.% nano-Al2O3 composite powder. The effect of ECAP and extrusion on consolidation behavior of composite powder and mechanical properties of subsequent compacts are presented. It is found that three passes of ECAP in tube at 200?°C is capable of consolidating the composite to 99.29% of its theoretical density whereas after hot extrusion of the composite the density reached to 98.5% of its theoretical density. Moreover, extrusion needs higher temperature and pressing load in comparison to the ECAP method. Hardness measurements show 1.7 and 1.2 times higher microhardness for the consolidated composite and pure aluminum after ECAP comparing with the extruded ones, respectively. Microstructural investigations and compression tests demonstrate stronger bonds between the particles after three passes of ECAP than the extrusion. Furthermore, the samples after three passes of ECAP show better wear resistance than the extruded ones.  相似文献   

16.
Aluminium matrix composites reinforced with molybdenum aluminide nanoparticles were synthesized by ball milling and reactive sintering of the mixture of aluminium and 10 wt% hydrated molybdenum oxide powders. Sintering the as milled powder in air below 750 °C produced MoAl12 intermetallic compound nanoparticles, at 750 °C produced a mixture of MoAl5 and MoAl4 nanoparticles and at 800 °C under Argon atmosphere produced predominantly MoAl4 intermetallic nano-particles in the Al matrix. The powder compacts sintered in air below 750 °C produced MoAl12 whereas at 750 °C or above formed the Al matrix composite reinforced with the MoAl5 nanoparticles. These nanoparticles become agglomerated to take up some irregular shaped flakes in the metal matrix. The reaction between Al and hydrated Mo oxide powders was found to be a favorable way to produce predominantly a particular Mo–Al intermetallic compound at a particular temperature. The Al2O3 particles formed as another reaction product, in all the above reactions, remain distributed in these composites. The composites thus formed were characterized by SEM-EDS, DTA, XRD and TEM analysis.  相似文献   

17.
通过气雾化方法制备Al86Ni7Y4.5Co1La1.5(摩尔分数,%)合金粉末。首先,将粉末进行不同时间的球磨,然后在不同的烧结温度及保压时间等条件下对粉末分别进行热压烧结和放电等离子烧结。通过X射线衍射仪(XRD),扫描电镜(sEM)以及透射电镜(TEM)对粉末和块体材料的显微组织和形貌进行表征。结果表明:在特定球磨参数下球磨100h以上可以产生非晶,而且通过放电等离子烧结可以得到非晶/纳米晶块体材料,然而这种材料的相对密度较低。通过热压烧结可制备抗压强度为650MPa的Al86Ni7Y4.5Co1La1.5纳米块体材料。  相似文献   

18.
The hot deformation behavior of(3 vol%SiC_p + 3 vol%Mg_2B_2O_(5w))/6061 Al(W_3P_3) hybrid composite and6 vol%SiCp/6061 Al(P_6) composite have been characterized in the temperature range of 300-450 ℃ and strain rate range of 0.0001-0.1 s~(-1) using isothermal constant true strain rate tests.The flow behavior and processing maps have been investigated using the corrected data to eliminate the effect of friction.Under the same deformation conditions,the compressive resistance of the singular composite remains superior to that of the hybrid composites.The processing map of W_3P_3 hybrid composite exhibits a single hot working domain at the temperature between 350 and 450 ℃ with strain rate between 0.0001 and 0.003 s~(-1)(domain A).Two hot working domains exist for P_6 composite:(i) 300-400 ℃/0.0001-0.003 s~(-1)(domain Bl);(ii) 380-450 ℃/0.01-0.1 s~(-1)(domain B2).The processing maps also reveal the flow instability of the two composites,which is associated with whiskers breakage,whisker/matrix interfacial debonding,SiCp/matrix interfacial decohesion,adiabatic shear bands or flow localization,and wedge cracking in the corresponding regions.The estimated apparent activation energies are about 224 kJ mol~(-1) in domain A for W3P3 hybrid composite,177 kJ mol~(-1) in domain Bl and 263 kJ mol~(-1) in domain B2 for P_6 composite,respectively.These values are higher than that for self-diffusion in Al(142 kJ mol~(-1)),suggesting that there is a significant contribution from the back stress caused by the presence of particles and/or whiskers in the matrix.The deformation mechanisms corresponding to domain Bl and domain B2 are dislocation climb controlled creep and cross-slip for P_6 composite,respectively.For W_3P_3 hybrid composite,the deformation mechanisms contain dislocation climb controlled creep and grain boundary sliding caused by DRX in domain A.  相似文献   

19.
In this study, the influence of the glass addition and sintering parameters on the densification and mechanical properties of tetragonal zirconia polycrystals (3Y-TZP) ceramics were evaluated. High-purity tetragonal ZrO2 powder and La2O3-rich glass were used as starting powders. Two compositions based on ZrO2 and containing 5 wt.% and 10 wt.% of La2O3-rich glass were studied in this work. The starting powders were mixed/milled by planetary milling, dried at 90 °C for 24 h, sieved through a 60 mesh screen and uniaxially cold pressed under 80 MPa. The samples were sintered in air at 1200 °C, 1300 °C, 1400 °C for 60 min and at 1450 °C for 120 min, with heating and cooling rates of 10 °C/min. Sintered samples were characterized by relative density, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and fracture toughness were obtained by Vickers indentation method. Dense sintered samples were obtained for all conditions. Furthermore, only tetragonal-ZrO2 was identified as crystalline phase in sintered samples, independently of the conditions studied. Samples sintered at 1300 °C for 60 min presented the optimal mechanical properties with hardness and fracture toughness values near to 12 GPa and 8.5 MPa m1/2, respectively.  相似文献   

20.
In this investigation, MoSi2 intermetallic compound has been synthesized by reducing of MoO3/SiO2 powder mixtures by Al and carbon via mechanical alloying (MA). Powder mixtures were ball milled for 0–100 h and structural evolutions have been monitored by X-ray diffraction. In the Al system, both β-MoSi2 (high temperature phase) and -MoSi2 (low temperature phase) were obtained after 3 h of milling and after 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. In reducing with carbon, two different compositions with nominal carbon content of 13.7 and 24 wt.% were used that in both compositions, -MoSi2 forms during 10 h of milling. Higher carbon content increases the amount of MoSi2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号