首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
张静  单磊  苏晓磊  李金龙  董敏鹏 《表面技术》2018,47(12):198-204
目的 讨论海水环境下不同基体材料对Cr/CrN交替的多层复合涂层磨蚀性能的影响,为海水环境下耐磨蚀材料基体的选择和应用提供参考。方法 采用多弧离子镀技术在316L不锈钢和TC4钛合金基体上沉积Cr/CrN多层复合涂层,通过XRD、SEM等技术对涂层材料的微观结构进行表征,通过硬度测试、结合力测试、电化学分析、摩擦磨损试验等技术对涂层材料的力学性能、电化学性能以及摩擦学性能进行分析,比较不同基体对Cr/CrN多层涂层在海水环境中磨蚀性能的影响。结果 以TC4钛合金为基体的Cr/CrN多层涂层的硬度为1727.2HV0.3,虽略小于以316L不锈钢为基体的涂层硬度(2241.5HV0.3),但其在膜-基结合力、海水环境下电化学性能和摩擦学性能等方面均优于以316L不锈钢为基体的涂层。结合力测试中,以TC4为基体的多层涂层初始裂纹出现在31 N,扩展裂纹出现在42 N,大于316L基体涂层的22 N和35 N。电化学测试中TC4基体涂层的腐蚀电位为?0.20 V,大于316L基体涂层的腐蚀电位(?0.21 V)。海水环境下TC4基体涂层的平均摩擦系数和磨损率分别为0.35和2.9950×10?5 mm3/(N?m),均小于316 L基体涂层的平均摩擦系数(0.36)和磨损率(4.9895×10?5 mm3/(N?m))。结论 TC4钛合金更适合作为海水环境用Cr/CrN多层涂层耐磨蚀材料的基体材料。  相似文献   

2.
The electroless nickel–phosphorous (Ni–P) coating was chosen as an interlayer to improve the properties of the CrN/mild steel (MS) composite. A hypophosphite-reduced acid solution was used to first deposit electroless Ni–P onto MS substrates, and then the CrN overlayer was deposited by reactive r.f. magnetron sputtering onto the electroless Ni–P modified substrate. The electroless Ni–P layer crystallizes with the precipitation of a Ni3P phase during r.f. sputtering, and thus a coating–substrate composite of CrN/Ni–Ni3P/MS is formed. The electroless Ni–P coating increases the surface hardness of the steel substrate to more than three times. The surface hardness of the CrN coating modified by an electroless Ni–P interlayer exhibits a hardness higher than 2000 HK0.015. The usual substrate effect on the microhardness of the coatings is nearly eliminated with the complex coating feature, and a significant enhancement of surface hardness in the coating assembly is achieved. The corrosion tests indicate that the Ni–Ni3P/MS configuration exhibits a more positive Ecorr value (i.e. less electronegative) than CrN/MS and the corresponding potential curve is shifted toward the low-current side, indicating a better anti-corrosion performance. Through comparison of the Ecorr values and the polarization curves, it is demonstrated that the CrN/Ni–Ni3P/MS composite exhibits significantly higher corrosion resistance than the Ni–Ni3P/MS and CrN/MS coating configurations.  相似文献   

3.
目的 提高TC4钛合金的硬度和耐磨损性,改善CrN硬质涂层与TC4钛合金的适应性.方法 采用等离子体增强磁控溅射系统,通过调节热丝放电电流,在TC4钛合金基体表面沉积疏密CrN单层和素多层涂层.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、纳米压痕仪、洛氏压痕仪、摩擦磨损仪以及台阶仪,表征涂层形貌、成分、物相及性能.采用动电位极化法表征涂层的耐腐蚀性.结果 当热丝放电电流为较低的4 A×4时,沉积的CrN单层涂层为具有针孔、孔洞等缺陷的疏松结构,8 A×4沉积的CrN单层涂层具有致密结构,周期性调节热丝放电电流则获得疏密交替的CrN素多层涂层.CrN涂层均由单一面心立方结构的CrN相组成,疏松CrN单层涂层的衍射晶面为(111)、(200)、(220)及(222),致密CrN单层涂层沿(111)晶面择优生长,随着疏密子层调制比的增大,CrN素多层涂层的(111)衍射峰不断增强.疏松CrN单层涂层的最小H和最大E分别为13.0 GPa和207.5 GPa,调制比为1:4的疏密CrN素多层涂层的最小H和最大E分别为17.0 GPa和257.4 GP.在1470 N载荷下洛式压痕法表明,致密CrN单层涂层的结合强度最低,等级为HF5,其余涂层均为HF1—HF4.CrN涂层的自腐蚀电位较TC4钛合金均发生了正移.结论 CrN硬质涂层可以有效提高TC4钛合金的硬度和耐磨损性,表面得到明显强化.周期性调节等离子体密度所沉积的疏密CrN素多层涂层与单层相比,涂层性能明显改善.  相似文献   

4.
RUTILE-TJO2is a versatile material possessing manyinteresting physical,chemical,optical and dielectricproperties[l].It is also a good tribological material thatcan offer low friction and low wear rate[2,3].However,the application of rutile in the tribological field hasbeen limited to titanium alloys only so far,for example,by thermal oxidation of titanium alloys[4,5].Very fewinvestigations have been directed to the tribologicalapplications of rutile films on substrates other thantitanium al…  相似文献   

5.
The present communication proposes a new model for the computation of the composite hardness of coated systems as a function of the relative indentation depth, the hardness of both coating and substrate and two material constants that characterize the performance of the film during the indentation test. The model is developed from several important considerations which can be summarized as follows: (1) The substrate starts to contribute to the composite hardness at penetration depths of the order of 0.07–0.2 times the coating thickness, as suggested in the literature. (2) Above such a boundary the composite hardness depends mainly on the intrinsic hardness of the coating, whereas below it such a hardness is determined essentially by the hardness of the mixture that encompasses the remaining part of the film and the plastically deformed substrate material. (3) The hardness of such a mixture is assumed to be constant, except for the possible indentation size effect that could be displayed by the substrate. (4) The composite hardness is given by a linear law of mixtures in terms of the hardness of the coating and such a mixture, and the volume fraction of both materials under the indenter, at any given depth of the latter. It is shown that the model proposed describes very well the hardness data obtained in different systems including: Ti and TiC formed on a chromium steel of a high carbon content; TiN; TiCN and CrN deposited on M2 steel; and TiN0.55, TiN0.65, TiN0.75, ZrN0.50, ZrN0.60 and ZrN0.70 deposited on 316L stainless steel substrate. The results are also compared with those derived from the models earlier advanced by Jönsson and Hogmark, Burnett and Rickerby, Chicot and Lesage and Tuck et al., without taking into consideration the indentation size effect of the film. It is shown that the modified version of the earlier model put forward by Korsunsky et al., published recently by Tuck et al., constitutes a particular form of the model here proposed.  相似文献   

6.
电弧离子镀CrN涂层的制备及性能研究   总被引:2,自引:0,他引:2  
用电弧离子镀技术在W18Cr4V高速钢试样上制备了CrN涂层,采用X射线衍射仪、扫描电镜、能谱议、显微硬度仪、磨损试验机等对涂层的表面形貌、相结构、硬度和耐磨性进行了分析.对比研究了经工艺优化后的CrN涂层和TiN、TiAlN涂层以及未涂层钻头干式钻削7075铝合金的切削性能,得出了最佳的沉积偏压和切削转速.结果表明,偏压为-50~-150 V时,涂层均由Cr2N 相和CrN相组成,随偏压增加,涂层表面粗糙度降低,硬度和耐磨性增强;偏压过高,涂层的微观质量和性能反而下降.偏压为-100 V时,涂层的硬度和耐磨性最佳.CrN涂层可显著提高高速钢刀具的切削性能,减小刀具磨损,延长刀具寿命.其钻削性能优于TiN、TiAlN涂层,明显优于未涂层.2 230 r/min为CrN涂层的最佳切削转速,经工艺优化后的CrN涂层钻头平均寿命约为未涂层钻头的5倍,其破损机制属于粘着磨损.  相似文献   

7.
The present investigation has been conducted in order to study the fatigue and corrosion fatigue behavior of an AA6063-T6 aluminum alloy substrate coated with a WC-10Co-4Cr deposited by HVOF thermal spraying. It has been determined that the deposition of such a coating on the aluminum substrate gives rise to significant gains in fatigue life in comparison with the uncoated substrate, when testing is carried out both in air and in a 3 wt.% NaCl solution. It has been shown that during testing in air, the fatigue gain ranges between ~ 540 and 4300%, depending on the maximum alternating stress applied to the material. Larger fatigue gains are associated with low alternating stresses. Also, when fatigue testing is conducted in the NaCl solution, the gain in fatigue resistance varies between ~ 620 and 1460%. Fatigue cracks have been observed to initiate at the coating surface and then grow towards the substrate after propagating through the entire coating thickness. Crack growth along the coating has been observed to occur mainly along the regions formed by the agglomeration of W and W-Co-Cr-rich particles, flanking the tougher Co-Cr-rich areas. Although in the present work residual stresses were not measured, it is believed that the gain in fatigue life of the coating-substrate system is due to the presence of compressive residual stresses within the coating which hinder fatigue crack propagation. The deposition of the coating does not give rise to significant changes in the static mechanical properties and hardness of the aluminum alloy substrate. It has been observed that the WC-10Co-4Cr coating displays a significant indentation size effect and has a mean hardness of ~ 9.4 GPa.  相似文献   

8.
In the paper, the results of wear and corrosion tests of the CrCN/CrN multilayer coatings, formed by cathodic arc evaporation on 42CrMo4 (AISI 4140) steel substrates are presented. The substrates were subjected to thermo-chemical treatment–nitriding with various nitriding potential. The results of nitriding were determined by XRD and the hardness profile in the samples cross-section. The morphology of thin coatings was examined with SEM. A Vickers FV-700 and Fisherscope HM2000 hardness testers enabled to investigate hardness of steel substrates and CrCN/CrN coatings respectively. A pin-on-disc wear tests were used to determine the hardness and tribological parameters of the coatings: the coefficient of the friction and wear rate. The scratch test and Rockwell test were applied to assess the adhesion of the coatings to the substrates. The corrosion properties of coating–steel substrate systems were investigated using potentiodynamic polarisation tests. Corrosion potential, corrosion current density and polarization resistance were determined. It was found that that the nitriding of steel substrates improves properties of the coating–substrate system. The nitriding 42CrMo4 steel substrate with low nitriding potential enable to obtain substrates without surface “white layer” what favours good adhesion of the coating to the substrate. The CrCN/CrN multilayer coating–steel substrate systems show good mechanical and tribological properties and corrosion resistance.  相似文献   

9.
In tribological applications the coating-substrate combination can be considered as a system, since both greatly influence the properties of that affect the tribological performance. Further, it is often desirable that both high wear resistance and corrosion resistance can be achieved even when low cost and easily machineable substrate materials are considered. Duplex surface treatment combining pulse plasma nitriding and PVD coating can provide solution for excellent wear and corrosion resistance for low alloy and constructional steels.In this work three different pulse plasma nitriding processes were carried out prior to the CrN/NbN PVD coating to attain high surface hardness and enhanced load bearing behaviour for S154 high strength construction steel. The phase composition of the compound layer, formed in the nitriding process, was found to greatly affect the tribological properties of the duplex system. The compound layer with high amount of ?-phase contributed to superior corrosion and wear resistance, whereas the ductile γ'-phase compound layer provided better impact resistance and enhanced. The best duplex treated S154 samples had wear resistance comparable to that of similarly coated HSS. The corrosion resistance was also improved by duplex process. If anodic current at + 500 mV vs. SCE is considered as criteria, the best system has almost 3 orders of magnitude lower corrosion current than with the PVD coating alone.  相似文献   

10.
Organic-inorganic hybrid coating material with a very high level of inorganic loading was prepared by a sol-gel process in which the initial hydrolysis and condensation steps of the inorganic precursors are separated. The coating solution was deposited onto various metallic and non-metallic substrates by a simple flow coating method. The coatings were then cured using UV radiation. The adherence of this coating material was assessed by scratch testing and indentation testing, together with electron microscope observations of the coating-substrate interfaces. The coating was shown to adhere well to aluminium, nickel and glass substrates and to adhere particularly well to polyterephthlate, polycarbonate and polymethyl methacrylate substrates. By comparison, the quality of the adherence of the coating on brass and stainless steel substrates was less good.  相似文献   

11.
Five nanostructured CrN/ZrN multilayer coatings were deposited periodically by cathodic arc evaporation. The bilayer periods of the CrN/ZrN multilayer coatings were controlled in the range of 5 to 30 nm. The structures and bilayer period of the multilayer coatings were characterized by an X-ray diffractometer. The microstructures of thin films were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Nanoindentation, scratch tests, Daimler–Benz Rockwell-C (HRC-DB) adhesion tests, microhardness and pin-on-disk wear tests were used to evaluate the hardness, adhesion, indentation toughness and tribological properties of thin films, respectively. It was found that the hardness and tribological properties were strongly influenced by the bilayer period of the CrN/ZrN multilayer coatings. An optimal combination of mechanical properties and excellent tribological behavior was found for a coating with a critical bilayer period of 30 nm.  相似文献   

12.
CrN/CrAlSiN涂层海水环境下的摩擦学性能   总被引:1,自引:1,他引:0  
为提高海洋装备摩擦零部件的摩擦学性能,采用多弧离子镀技术在316L不锈钢上制备了CrN/CrAlSiN涂层。通过XRD、XPS表征涂层的物相及成分,SEM和TEM表征涂层的形貌和微观结构,并用纳米压痕仪测试其硬度,采用摩擦磨损试验机对涂层在大气和海水环境中的摩擦磨损性能进行测试。结果表明:CrN/CrAlSiN涂层的微观结构主要有CrN相、AlN相以及非晶态Si_3N_4包裹CrN、AlN相,(111)择优取向最为明显;基于微观结构与CrN过渡层的设计,CrAlSiN涂层硬度高达35.5 GPa;较之于316L基底,涂层致密的结构使其在海水环境下表现出更好的耐腐蚀性能;在大气和海水环境下,CrN/CrAlSiN涂层的摩擦因数及磨损率均明显降低,在海水环境下达到最优。  相似文献   

13.
等离子熔覆多元镍基涂层-基体的力学性能研究   总被引:2,自引:2,他引:0  
目的在FV520B不锈钢基体上,采用等离子熔覆技术制备多元镍基涂层,研究不同成分配比涂层-基体协同作用下的力学性能。方法通过扫描电子显微镜分析涂层的表面及界面形貌,并对涂层-基体进行了拉伸及高温压缩性能测试,得到各涂层的抗拉强度及高温变形抗力,对比分析组织、相分布特征及涂层成分对涂层-基体系统力学性能的影响。结果等离子熔覆涂层组织致密,界面处呈现良好的冶金结合,这种结合方式可提高涂层-基体的综合力学性能;涂层-基体协同作用可显著提高材料的抗拉强度及变形抗力,且涂层的成分、组织及相分布特征是影响涂层-基体协同形变行为的关键因素。其中,Ni60+20%Ti涂层材料的抗拉伸性能最好,抗拉强度高达921 MPa,较基体材料提高了19.6%。Ni60+30%Ti+10%WC涂层-基体的高温力学性能最好,高温变形抗力达687.87 MPa。结论等离子熔覆多元镍基涂层使基体材料的抗拉强度有所提高,且高温变形抗力提高显著。  相似文献   

14.
A method for evaluating the hardness of coatings with nanosize thickness is suggested. The method includes the determination of the hardness of the “coating-substrate” composition by indenting the coating and subsequent computation of the hardness with the use of the additivity rule. This requires determination of the thickness of the coating, of the hardness of the substrate, and of the indentation depth.  相似文献   

15.
Advanced nanomechanical testing has been used to evaluate mechanical properties of Ni-free Al12(Fe,Cr)3Si2 intermetallic coatings grown on the 316 LVM steel by hot dipping in a Al-12.6 at.% Si liquid alloy for various immersion times. Despite the ultrafine-grained structure of the coating (~200 nm), the indentation size effect is more pronounced for the intermetallic coating than for the steel, which is explained by the higher geometrical necessary dislocation (GND) density of the intermetallic coating. To determine the true hardness of the coatings, the model of Nix and Gao was used. It has been shown that the hardness of the coating decreases from 6.2 GPa for the shortest time of immersion (60 s), to 3.36 GPa for the highest immersion time (600 s), which is always much higher than that for the substrate (1.82 GPa). The decrease in both hardness and GND with increasing immersion time is related to the relaxation of residual stresses, which act as a hardening factor. The net effect is an increase of the plasticity index of the coating. Young’s modulus for the intermetallic phase (146 GPa) is lower than that for the austenitic steel 316 LVM (220 GPa), which will favour the load transfer at the bone/metal interface, weakening the so-called “stress shielding effect”. Hence, the nanomechanical properties of this novel Ni-free intermetallic coating, tightly adhered to the substrate, offer a window of opportunity for orthopaedic applications.  相似文献   

16.
徐颖婕  施雯 《上海金属》2007,29(2):9-12
采用非平衡磁控溅射法在硬度分别为56HRC和62HRC的Cr12MoV冷作模具钢表面制备Cr/CrN/CrTiAlN涂层,综合分析了涂层的表面性能,并进行了应用试验。实验结果和应用试验表明:Cr/CrN/CrTiAlN涂层能显著提高Cr12MoV钢基体的表面硬度(2550HV25)及承载能力,并与基体较好地结合,从而显著减少了Cr12MoV钢基体的磨粒磨损,耐磨性提高,对于高的基体硬度这一效果更为明显。经Cr/CrN/CrTiAlN涂层的翻边精整冷冲模,较未表面处理模具其使用寿命提高了两个数量级以上。  相似文献   

17.
A new type of nano test system was introduced, the test principle and the indentation data analysis method were described. It was used to test the micro mechanical properties, such as hardness, elastic modulus and indentation creep property of n-Al2O3/Ni composite coating on steel prepared by brush plating, and the variety of mechanical properties with coating thickness was researched. The results show that the mechanical properties are basically identical within the whole coating, the hardness and modulus decrease in the defect fields, especially within the dendritic crystals, whereas the mechanical properties are not influenced greatly at the interspaces among dendritic crystals. The average hardness and elastic modulus of n-Al2O3/Ni coating are 6.34 GPa and 154 GPa respectively, and the hardness is 2.4 times higher than that of steel and the indentation creep curve of n-Al2O3/Ni coating is similar to that of the uniaxial compression creep, and the creep rate of steady-state is about 0. 104 nm/s. These results will supply useful data for process improvement, new type material development and application expansion.  相似文献   

18.
The purpose of this study is to investigate the effect of charging energy on droplet diameters and the properties of high-carbon steel coatings sprayed by wire explosion spraying. With different charging energies, droplets were collected when high-carbon steel wire explosion occurred, and the coatings were sprayed on aluminum alloy substrates. Droplet diameter distributions were obtained by using a Laser Particle Size Analyzer. Coatings were characterized by observing their spreading morphologies and cross sections with a Scanning Electron Microscope (SEM) and testing their thickness, surface roughness and Vickers indentation hardness. The results revealed that when the charging energy became greater, the droplet diameter would be smaller, the diameter distribution would be more concentrated, and droplets spread more efficiently on the substrate surface. In addition, as a result of droplets with a smaller diameter, the coatings became smoother and denser as the charging energy rose. However, the coating thickness and hardness diminished with the ascension of charging energy. The recommended charging energy is 7.18 kJ to achieve better high-carbon steel coating performance.  相似文献   

19.
TiAlSiN coatings has been proposed and studied because of their desirable properties in hardness and coating-substrate adhesion. Further improvement of their performance can be achieved by better understanding the effect of the concentration of each element on the microstructure and mechanical properties of the coatings. In this paper, the TiAlSiN coatings with different Ti content were deposited by reactive DC magnetron sputtering method. The microstructure and mechanical properties of the coatings were analyzed by energy dispersive spectroscopy, X-ray diffraction, transmission electron microscope, scanning electron microscope, nano-indentor and Rockwell indentation tester. The results reveal that TiAlSiN coatings consisted of amorphous phase and crystalline phase. With a Ti content of 63 at.%, as well as a Si content of 7 at.%, a super-hard TiAlSiN coating with a nanoindentation hardness of 66 GPa was achieved. What is more, in contrast to the well-described super-hard nanocomposite TiAlSiN coatings, another “nanocomposite” microstructure coating with a Ti content of 29 at.% in which the amorphous phase is wrapped in a crystalline phase was identified, with a comparatively low hardness value of 20 GPa. The highest adhesion strengths with a Rockwell indentation classes HF2 was achieved for a coating with a Ti content of 63 or 65 at.%.  相似文献   

20.
为了进一步提高超硬TiB2镀层与基体的结合力,采用磁空溅射法在高速钢表面上制备了多层相间的Ti/TiB2超硬镀层.利用多种实验方法测试和研究了镀层的组织结构,形貌,表面粗糙度,硬度和与基体的结合力.结果表明,镀层的Ti/TiB2相间层数对这些性能有很大的影响.当层数从二逐渐增加到十二,TiB2镀层的(001)织构逐渐消失而变成无择优取向,镀层表面粗糙度增加,但镀层硬度基本不变.只有当层数为十二时,镀层硬度才明显降低.结果也表明,多层镀层可有效地提高镀层与基体的结合力,并存在着一最佳的多层结合.本文也对多层结构对其它组织和性能特征的影响进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号