首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effects of the deformation degree and cooling rate on the microstructure and phase transformation temperature for the B1500 HS steel, the samples were heated at 900 °C for 5 min, compressed by 10, 20, 30 and 40% at the strain rate of 0.1 s~(-1), and then cooled down at the rates of 50, 40, 25, 20 and 15 °C/s by the thermo-mechanical simulator,respectively. The start and finish temperatures of the phase transformation were determined by the tangent method, and the volume fraction of the phase transformation was ascertained by the level principle according to the dilatometric curves.The volume fraction of the retained austenite was determined by X-ray diffraction. The results show that the volume fraction of the bainite rises with an increase in the deformation degree as the cooling rate is lower than the critical rate. At the same cooling rate, the phase transformation temperature rises with an increase in the deformation degree, and the sizes of both the martensite and bainite phases reduce due to the austenite grain refinement induced by the deformation. The volume fraction of the retained austenite reduces as the deformation degree increases. The critical cooling rate of the undeformed samples is approximately 25 °C/s and the critical cooling rate rises as the deformation degree increases.  相似文献   

2.
An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properties of the UFG HWRed steel were investigated. The results show that the HWRed steel exhibits simultaneous improvements in strength,uniform elongation and work hardening, which is mainly attributed to the refinement of martensitic microstructures. The HWRed steels comprise only a-phase when annealing at lower temperatures below to 550 °C and at higher temperatures above to 700 °C. Whereas, UFG c-austenite is formed by reverse transformation when the HWRed steel was annealed at intermediate temperatures from 550 to 700 °C and the volume fraction increases with increasing annealing temperatures,consequently resulting in a dramatic increase in ductility of the annealed HWRed steels. It was found that the transformed UFG austenite and ferrite remained ~500 nm and ~800 nm in size when the HWRed steel was annealed at 650 and700 °C for 1 h, respectively, showing an excellent thermal stability. Moreover, the HWRed steel annealed at 650 °C exhibits high strength-ductility combinations with a yield strength of 906 MPa, ultimate tensile strength(UTS) of1011 MPa, total elongation(TEL) of 51% and product of strength and elongation(PSE: UTS 9 TEL) of 52 GPa%. It is believed that these excellent comprehensive mechanical properties are closely associated with the UFG austenite formation by reverse transformation and principally attributed to the transformation-induced plasticity(TRIP) effect.  相似文献   

3.
针对含铌中锰钢进行了不同退火温度(700、750和800 ℃)和不同冷却方式(空冷、水冷)下的临界退火试验。结果表明,随着临界退火温度的升高,强塑积和残留奥氏体含量呈现先升高再降低的趋势。在750 ℃临界退火水冷后,试验钢的力学性能最佳,屈服强度达到750 MPa,抗拉强度为1820 MPa,断后伸长率为13.9%。随着临界退火温度升高,试验钢中渗碳体逐渐溶解,基体中C和Mn含量增多,在保温过程中配分进入奥氏体的C和Mn含量增多,导致奥氏体更稳定,残留奥氏体含量增多。当临界退火温度进一步升高,保温时奥氏体含量的增多导致配分进入奥氏体的C和Mn浓度降低,导致奥氏体稳定性降低,在冷却过程中形成大量马氏体。马氏体的增多和大尺寸团簇状(Nb,Mo)C的析出导致800 ℃临界退火后试验钢的高强度和低塑性。在相同临界退火温度下,水冷和空冷后试验钢的相组成相同。在800 ℃临界退火时,两种冷却方式对残留奥氏体含量和力学性能引起的差异最为明显,这与空冷过程中C和Mn向奥氏体配分更充分有关。  相似文献   

4.
研究了热处理冷却工艺对贝氏体钢拉杆组织及力学性能的影响。试验结果表明,ø70 mm贝氏体钢拉杆材料经920 ℃空冷+300 ℃回火、920 ℃水冷30 s后出水空冷+300 ℃回火后,杆体的组织为贝氏体铁素体和残留奥氏体;经920 ℃水冷+200 ℃回火后,杆体的组织为回火板条马氏体和残留奥氏体。920 ℃水冷+200 ℃回火时棒料1/2半径处的Rm为1513 MPa、KV2为73.2 J、硬度为46.5 HRC;920 ℃水冷30 s后空冷+300 ℃回火时棒料1/2半径处的Rm为1254 MPa、KV2为76.0 J、硬度为42.0 HRC;920 ℃空冷+300 ℃回火时棒料1/2半径处的Rm为1226 MPa、KV2为75.5 J、硬度为41.9 HRC。ø70 mm贝氏体钢拉杆热处理先水冷后空冷可以提高其冲击性能。  相似文献   

5.
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响   总被引:2,自引:0,他引:2  
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2—7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa、强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关.随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

6.
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2-7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa,强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关,随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

7.
含钒TRIP钢热变形后在350~450℃等温处理30min,研究卷取温度对其显微组织和力学性能的影响.结果表明,随等温温度的升高,贝氏体、残余奥氏体的量以及残余奥氏体中碳浓度先增加后减少.断后伸长率、最大力非比例伸长率和应变硬化指数表现出与此类似的变化趋势.450℃等温处理时析出的渗碳体对延性和应变硬化指数有不利影响.热轧TRIP钢的卷取温度为400℃时将获得优良的综合力学性能.  相似文献   

8.
利用Factsage软件、SEM、XRD等研究了不同原始组织的0.2C-5.0Mn-0.5Si-1.0Al中锰TRIP钢经临界区退火处理后的显微组织与力学性能。结果表明,经热力学计算、设计的不同预处理工艺处理后试验钢的组织分别为:铁素体+块状残留奥氏体(700 ℃预处理10 min)、铁素体+马氏体+少量残留奥氏体 (800 ℃预处理5 min) 和马氏体+少量碳化物 (900 ℃预处理5 min)。不同预处理工艺处理后试样能获得不同形貌的残留奥氏体,700 ℃预处理+临界退火试样得到块状残留奥氏体,其他两种工艺下为膜状残留奥氏体。800 ℃预处理+临界退火试样拥有最佳力学性能,屈服强度为840 MPa,抗拉强度为1121.5 MPa,伸长率为33.25%,强塑积达到37.29 GPa·%。残留奥氏体形貌对中锰钢的加工硬化性能有显著影响,700 ℃预处理+临界退火试样的块状残留奥氏体稳定性较差,表现出高的加工硬化率,但持续区间较短;而800 ℃预处理+临界退火试样的膜状残留奥氏体稳定性更好,试样呈现较高的加工硬化率且持续区间较长。  相似文献   

9.
以0.1C-7.2Mn热轧和冷轧中锰钢为研究对象,采用扫描电镜(SEM)、X射线衍射仪(XRD)、室温拉伸试验等手段,研究了奥氏体逆相变(ART)退火后不同冷却方式对中锰钢加工硬化行为的影响。结果表明,热轧试验钢ART退火后得到板条状铁素体-奥氏体组织,退火后空冷试样中有大量碳化物析出,而水冷抑制了碳化物析出。冷轧试验钢ART退火后得到了等轴状铁素体-奥氏体组织,退火后空冷试样表现为连续屈服,而水冷促进了组织的等轴化;热轧试样获得更高体积分数的残留奥氏体,获得了优异的力学性能;残留奥氏体体积分数越大,拉伸变形过程中发生的TRIP效应越持久,提供更高、更持续的加工硬化。  相似文献   

10.
In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe–0.28 C–1.55 Mn–2.06 Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.  相似文献   

11.
王英虎 《金属热处理》2022,47(7):203-210
借助FactSage数值模拟软件对Fe-(10~20)Mn-(5~10)Al-(0~0.5)C系低密度钢的凝固及冷却路径、相变及析出相进行了研究,利用FactSage软件中的FSstel数据库对该体系的垂直截面图进行计算,分析了Mn、Al及C元素对凝固及冷却过程中相变及析出相的影响,并得到了Fe-15Mn-8Al-0.25C低密度钢的平衡凝固相变路径图。结果表明,Fe-15Mn-8Al-0.25C低密度钢中热力学计算出的平衡相有液相、铁素体、奥氏体和κ-碳化物, 由1600 ℃冷却至600 ℃完整的平衡相变路径为:液相→液相+铁素体→液相+铁素体+奥氏体→铁素体+奥氏体→铁素体+奥氏体+κ-碳化物。C和Mn含量的增加可扩大Fe-15Mn-8Al-0.25C低密度钢奥氏体相区,Al元素增加缩小奥氏体相区。κ-碳化物的析出温度随着Al与C含量的增加而升高,Al与C元素均可促进κ-碳化物析出。Fe-15Mn-8Al-0.25C低密度钢800 ℃时效3 h后的抗拉强度为602 MPa,屈服强度为520 MPa,断后伸长率为28.6%,时效5 h后的抗拉强度为729 MPa,屈服强度为685 MPa,断后伸长率为22.4%,随着时效时间增加,试验钢的强度增加,断后伸长率降低。Fe-15Mn-8Al-0.25C低密度钢的密度为6.99 g/cm3,相比普通钢材减重效果达10.4%。  相似文献   

12.
Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified (Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -II hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI 1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)  相似文献   

13.
The hot deformation behavior of a medium-Mn steel was studied in terms of hot compression flow curves in the temperature range of 850–1050 ℃ and strain rates of 0.05–10 s~(-1).The thermo-mechanical analysis was carried out and suggested that the microstructure during deformation was completely austenite which had high tendency for dynamic recrystallization(DRX).The flow behavior was characterized by significant flow softening at deformation temperatures of 950–1050 ℃ and lower strain rates of 0.05–5 s~(-1), which was attributed to heating during deformation, DRX and flow instability.A step-by-step calculating procedure for constitutive equations is proposed.The verification of the modified equations indicated that the developed constitutive models could accurately describe the flow softening behavior of studied steel.Additionally, according to the processing maps and microstructure analysis, it suggested that hot working of medium Mn steel should be carried out at 1050 ℃, and the strain rate of 0.05–10 s~(-1) resulted in significantly recrystallized microstructures in the in steel.The flow localization is mainly flow instability mechanism for experimental steel.  相似文献   

14.
The transformation behavior and microstructure development in the heat affected zone (HAZ) of 800MPa grade ultra fine structured steel was investigated. It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates, with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the .fast cooling regime. At relatively high cooling rates, which corresponded to low heat inputs, the hardness o.f the simulated HAZ was above that of the base metal. When the cooling rate was below 9℃/s, the welding HAZ would have an obvious softening. The analysis of transformation rates in continuous cooling processes was completed by numerical differential method. The result indicated that the microstructure transformation rate o.f the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s.  相似文献   

15.
研究了快速加热连续退火工艺对V微合金化低Si含P系TRIP钢显微组织特征与力学性能的影响.结果表明,快速连续退火过程中,随着退火温度的升高,拉伸强度增加明显,然而为了保证其综合性能,并不能一味地提高其临界退火温度.加热速率80℃/s,退火温度为880℃时,残余奥氏体形态不仅仅局限于细小的块状结构;而且在贝氏体铁素体板条间能观察到大量的薄膜状残余奥氏体.细小、弥散的V(C,N))分布于铁素体或贝氏体基体中,大部分析出粒子直径在4—9 nm之间,实验钢具有优异的强度与塑性配合:Rm=1010 MPa,RP0.2=690 MPa,δ=23.6%,n=0.27,r=1.17,强塑积达到23836 MPa.%.退火温度过高或过低,都会减少残余奥氏体的体积分数、改变其形貌并增大其尺寸,导致综合力学性能下降.  相似文献   

16.
The influence of isothermal bainitic transformation (IBT) time on microstructure and mechanical properties of hot-dip galvanized TRIP steel with 0.20C-1.50Mn-1.2Al-0.26Si was investigated using optical microscopy, x-ray diffraction (XRD), Transmission Electron Microscope (TEM), dilatometry, and mechanical testing. This steel has high tensile strength of over 780 MPa with elongation more than 22%. The microstructure of the steel mainly consisted of ferrite, bainite, retained austenite, and martensite. The metastable austenite remaining after bainitic transformation will be transformed into martensite at the final cooling stage. The IBT time affects retained austenite content. When the IBT increased from 10 to 60 s, the amount of retained austenite increased from 9.40 to 15.42%, correspondingly. The IBT time also affects the strain hardening behavior. The n value characteristics of samples for IBT time from 10 to 30 s are similar to those of DP steel; however, the n value of specimen with IBT of 60 s shows features typical of TRIP steel.  相似文献   

17.
在Gleeble-1500热模拟试验机上进行铆螺钢的热模拟实验,通过研究其不变形条件下和与实验室轧机轧制变形量相一致的变形条件下的连续冷却相变行为,建立了相应的静态和动态CCT图,通过扫描电镜(SEM)对其组织进行观测。结果表明,由于形变增加了形核位置和能量,加速了相变,在热变形的CCT图中,变形使铁素体、珠光体和贝氏体转变线向高温区的左移。最快的冷却速度获得了全部的马氏体组织;随冷却速度降低,粒状贝氏体、多边形铁素体和珠光体组织形成;快冷抑制了铁素体和珠光体形成,使硬度增高;硅、锰和铬合金元素使CCT图中的珠光体和贝氏体转变线右移;在变形条件下以3.3℃/s~16.7℃/s的冷速冷却时,能够得到多边形铁素体、粒状贝氏体和残余奥氏体组织。由于组织中残余奥氏体的存在,有助于产生相变诱发塑性(TRIP)效应,铆螺钢实际轧制时可能能够获得满意的冷镦性能。  相似文献   

18.
研究了过冷奥氏体连续冷却相变行为,探索了冷却速率对组织的影响,在工业生产线试制出直径ϕ16 mm热轧盘条。通过拉拔和感应热处理试制出直径ϕ14.8 mm钢丝,钢丝组织为回火屈氏体+少量回火马氏体+少量残留奥氏体,抗拉强度大于2160 MPa,断面收缩率大于44%,可用于制造强度等级为2100 MPa的弹簧。  相似文献   

19.
《Acta Materialia》2007,55(19):6553-6560
After semi-solid treatment and rapid quenching, bearing steel 100Cr6 exhibits a martensitic structure with a large amount of retained austenite along the grain boundaries. The toughness values are significantly lower than after conventional hardening, even when the alloys are post-processed by an additional heat treatment step. Slow cooling from the freezing range results in a reduced amount of retained austenite and improved toughness properties. The low impact toughness values of the rapidly cooled conditions are associated with the appearance of intergranular fracture, while the slowly cooled condition fails in a transgranular manner. The structural development and the mechanical behaviour are explained by severe segregation of the main alloying elements during solidification, but also by sulphur enrichment in the remaining liquid phase. Chain-like precipitates of MnS are formed along the grain boundaries, similar to the well-known ‘burning’ phenomenon of low-alloyed steels.  相似文献   

20.
The microstructural and mechanical properties of a newly designed tool steel (L-40), specifically designed to be employed in the laser powder bed fusion (LPBF) technique, were examined. Melt pool boundaries with submicron dendritic structures and about 14% retained austenite phase were evident after printing. The grain orientation after high cooling rate solidification is mostly < 110 >  α∥ building direction (BD). Then, the heat treatment converted the microstructure into a conventional martensitic phase, reduced the retained austenite to about 1.5%, and increased < 111 >  α∥BD texture. The heat-treated sample exhibits higher tensile strength (1720 ± 14 MPa) compared to the as-printed sample (1540 ± 26 MPa) along the building direction, mainly due to hardening caused by a lower volume fraction of retained austenite phase and precipitation of carbides. As a consequence of the strength-to-ductility trade-off, the heat-treated sample showed lower elongation (10% ± 2%) than that of the as-printed sample (18% ± 2%). It was observed that transformation-induced plasticity (TRIP) occurs in both the as-printed and heat-treated samples during tensile testing, which dynamically transforms the retained austenite into martensite, leading to improved ductility. The minimum driving force to initiate the displacive phase transformation is about 6000 J/mol, which was achieved during tensile testing. The strength and ductility of LPBF-produced L-40 were compared with the other LPBF-produced tool steels in literature; the data indicate that heat-treated L-40 has an excellent combination of strength and ductility complemented with high printability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号