首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
主要通过SEM和TEM观察固溶时效过程β-CEZ钛合金ω相和α相的组织变化规律。发现β-CEZ合金在固溶处理后析出尺寸1~2 nm的无热ω相,在350~500℃时效处理时,ω相辅助形核析出长100~200 nm的针状α相,且随着时效温度升高,α相数量增多,尺寸略有长大。当时效温度达到550℃时,ω相基本消失,α相继续长大到约300nm。当时效温度升高到650℃以后,晶界析出大量的长条状α相,晶内α相长度长大到数微米。  相似文献   

2.
采用OM、SEM、XRD和TEM等研究了固溶态Ti-1300合金在350~700℃等温时效过程中相结构和组织转变。结果表明,Ti-1300合金在350℃等温时效时,β相基体上开始弥散析出细小的颗粒状ω相,后期ω相消失,出现了片状的α相。亚稳β相的分解方式为:β→ω+β→α+β。在400℃等温时效1 h时,亚稳β相分离出了β′相,继续保温,β′相消失,出现了长针状α相,亚稳β相的分解方式为:β→β′+β→α+β。在500~700℃等温时效时,α相在β晶界和晶粒内亚晶界上快速形核,随着保温时间的延长,晶界α相逐渐向晶内生长为α集束,随着时效温度升高,α相的片层越厚;亚稳β相的分解方式为:β→α+β。  相似文献   

3.
采用d-电子合金设计法设计了一种β钛合金,Ti-6Mo-5V-3Al-2Fe(wt.%)。在450℃~600℃范围内选取了多个时效温度进行时效处理,以研究时效温度对该合金组织演变及力学性能的影响。结果表明,当时效温度为500℃时,在ω辅助形核机制作用下,形成了尺寸和相间距更小的次生α相,在此细小的次生α相对β基体的强化作用下合金抗拉强度达到最大值,为1510MPa;同时,由于晶界α相的析出以及晶界无析出区的形成,导致合金的塑性极差,伸长率仅为4.6%。随着时效温度的升高,晶内细小的次生α相粗化。粗大的次生α相导致其相间距增大,并使可有效阻碍位错运动的α/β相界面减小。时效温度的升高使合金强度降低,但合金塑性提高。当时效温度升高至600℃,在β晶界处形成了向晶内平行生长的板条状次生α相,同时β晶粒内次生α相间距增大,使合金塑性明显提高,伸长率可达12.2%。  相似文献   

4.
研究了Ti-5321合金不同热处理制度下的α相析出行为。结果表明:β单相区固溶后的组织为单一的β晶粒组织,α/β两相区固溶后的组织中含有β基体和分布于β基体的初生α相。这两种组织在后续的时效过程中均析出细小针状次生α相,且其尺寸随时效温度的升高而增加,不同的是,β单相区固溶加时效样品的晶界处析出的次生α相的尺寸明显大于晶内次生α相。合金从910℃缓冷过程中α相首先在晶界处析出,随后片层α集束以晶界α相为核心形核并长大,随后的520℃时效过程中析出尺寸细小的针状次生α相。电子背散射衍射(EBSD)分析表明,缓冷过程中,在两侧β晶粒有平行{110}面的晶界上析出一种α相变体,这种变体与两侧的β晶粒均保持Burgers取向关系,以这种变体为形核核心向晶界两侧生长形成片层α相。在两侧β晶粒没有平行{110}面的晶界上会析出多种α相变体,每种变体只与其中一侧的β晶粒保持Burgers取向关系,且会以这种变体为形核核心向与其保持Burgers取向关系的β晶粒一侧生长形成片层α相。  相似文献   

5.
采用不同的等温锻造火次和相同的总变形量,改变TG6合金锻件的加热时间和每火次变形量,对该合金等温锻件的显微组织演化与拉伸性能进行研究。结果表明:随等温锻造火次增多,组织中初生α相含量增多,片状次生α相长度和亚β晶粒尺寸先减小后增大,而片状α相的厚度递增。室温和高温拉伸强度随锻造火次的增加呈现先减少后增加的趋势,塑性则先增加后减小。1火次成形时变形量较大,锻件产生温升造成组织中初生α相较少,同时较多且细长的次生α相增加了该锻件的拉伸强度。3火次成形时由于合金中各相再结晶程度不同,使组织中亚β晶界处产生较多细小等轴α相,该相增加了锻件的塑性。5火次锻造时,锻件加热时间较长,造成组织中α相的聚集长大。TG6合金等温锻造多火次成形时,每火次变形量存在一临界范围,处于该范围内每火次锻后空冷时合金发生部分再结晶,形成较为细小的等轴α相,阻碍亚β晶界的迁移,致使亚β晶粒尺寸较小,同时也造成组织中等轴α相尺寸的不均匀  相似文献   

6.
进行了大规格TC17钛合金棒材的镦粗压缩试验,然后进行了800℃/4 h水冷和630℃/8 h空冷,研究了β锻造工艺参数对合金微观组织和力学性能的影响规律。结果表明,变形温度对α相形态影响不大,原β晶界的位置由α相晶界占据,晶内α相是网篮交错分布;随着变形温度升高,β晶粒尺寸增大,室温和高温抗拉强度以及塑性下降,断裂韧性略有增大。随着变形程度增大,晶界处的α相发生弯折呈不连续分布,原β晶粒出现拉长现象,室温和高温强度、塑性增大,断裂韧性略有下降。综合考虑力学性能要求,TC17合金的β锻造变形温度不应高于相变点以上60℃,变形程度应控制在60%以内。  相似文献   

7.
研究了TB6钛合金β热处理过程中的β晶粒生长及片层结构形成。结果表明,TB6钛合金经β固溶后随不同冷速形成全β组织和(α+β)片状组织。淬火形成的全β组织β晶界平直,晶粒呈等轴状。缓冷下形成的片状组织中原始β晶粒内包含多个α集束,集束间取向各异,集束内α片彼此平行。β晶粒尺寸随保温时间和加热温度增加而增加。β晶粒尺寸与保温时间满足幂函数关系。随冷却速度降低,片层厚度基本呈线性增加,而集束尺寸先快速增加,后增加缓慢。  相似文献   

8.
对节约型2101双相不锈钢连铸坯试样在1180、1200、1220和1240 ℃进行高温热处理,通过光学显微镜、扫描电镜、透射电镜和显微硬度计等分析了2101双相不锈钢的显微组织、奥氏体含量及其硬度随加热温度和保温时间的变化规律.结果表明:在相同保温时间下,随着温度升高,2101双相不锈钢中奥氏体含量逐渐降低,晶粒逐渐粗化,奥氏体与铁素体的两相硬度差逐渐减小;在1240℃时,铁素体相的晶界及晶界内有大量的脆性相析出;TEM分析表明,这些析出相为六方结构的Cr2N相;在相同的加热温度下,随着保温时间的延长,奥氏体的含量逐渐增加,奥氏体与铁素体的两相硬度差逐渐增加.  相似文献   

9.
研究了TC21钛合金在两相区固溶后直接在较低温度保温一定时间水冷到室温(等温淬火)获得的组织与力学性能。将试样在900℃固溶0.5 h,分别在600~60℃温度范围等温保温1 h后水冷到室温,观察微观组织特征,测试宏观和显微硬度以及拉伸性能。结果表明:从600℃到400℃,次生α相宽度逐渐减小;从400℃到60℃,次生α相宽度几乎保持不变。宏观维氏硬度与β转变基体的微观维氏硬度变化规律相同。随着等温淬火温度提高,延伸率和断面收缩率缓慢增加。TC21钛合金的硬度、强度随着次生α相宽度的减小而升高。300或400℃等温淬火所得组织的强度与塑性的匹配性最好。  相似文献   

10.
阮健  毛小南  杨义  冯亮 《热加工工艺》2012,41(20):209-211
采用光学显微镜观察了不同温度固溶处理后Ti35合金的显微组织.结果表明,该合金的相转变温度为880~890℃,当在相变温度附近进行固溶处理时,形成不完整、不规则的锯齿状α组织,同时也可以看到沿着条形晶界的方向生成大量细小的针状组织.在两相区固溶处理,随温度的升高,晶界α发生球化,球化愈加明显.弥漫在晶界的黑色β相明显减少.  相似文献   

11.
利用BLT-C1000型激光立体成形设备制备了TC21钛合金块体,并对其分别进行了单级和双级退火处理,研究了单级和双级退火工艺对合金显微组织和力学性能的影响。结果表明,激光立体成形TC21钛合金的沉积态组织主要为网篮状组织。单级退火温度影响初生α相板条尺寸,低于550 ℃退火时,初生α相板条长度和宽度变化较小,高于650 ℃退火时初生α相板条长度明显增加,宽度略微降低。屈服强度和抗拉强度随退火温度升高而降低,断后伸长率和断面收缩率随退火温度升高而增大。双级退火时随第一级退火温度升高,初生α相含量降低,随着第二级退火温度的升高,次生α相尺寸增加。综合考虑,双级退火时宜选择870~900 ℃的第一级退火温度和560 ℃的第二级退火温度。  相似文献   

12.
对不同温度加热后的TC10钛合金棒材进行水冷、空冷、炉冷3种不同冷却方式的处理,通过光学显微镜、扫描电镜以及拉伸性能和冲击性能试验,研究了合金在不同冷却方式下的组织和力学性能。结果表明,TC10钛合金锻棒原始组织中α相有两种形态,一种为初生等轴α相,另一种为次生α相。当加热温度低于相变点时,形成的组织以双态组织和等轴组织为主,当加热温度高于相变点时,合金组织以全片层β转变组织和粗片层β转变组织为主。3种冷却方式下,水冷后合金的强度最大,炉冷后合金塑性最好。合金在炉冷后的冲击性能最高,其次为空冷、水冷。当加热温度在两相区时,3种冷却方式下合金的拉伸和冲击断口形貌包含韧窝和解理面,高低起伏明显;当加热温度在单相区时,合金的拉伸断口形貌为结晶状,撕裂棱明显,冲击断口具有晶间断裂特征。  相似文献   

13.
采用XRD、SEM、TEM及显微硬度测试等手段,系统研究了TC21合金固溶处理后的相变以及合金在550~850℃时а"相在时效过程中的分解机制及组织演变规律,结果表明:1000℃固溶30 min淬火后,TC21合金形成а"马氏体,且合金中存在少量β及O相(Ti2AlNb);随时效温度的升高,а"相逐步发生а"→а+а"_高→а+β_(亚稳)→а+β,а"+а'+β_(亚稳)→а+β,а"→а+β等分解过程;TC21合金的显微硬度依赖于时效温度和时效时间,时效时间延长,合金显微硬度先迅速增大,达到最大值后再逐渐减小.时效温度升高时,合金显微硬度达到最大值的时间缩短,且合金最终的显微硬度随时效温度的升高而降低.  相似文献   

14.
采用透射、X射线及显微硬度分析等方法,研究了TC21合金中淬火马氏体在长时间低温时效过程中的组织演变及马氏体分解机制。研究表明,淬火态TC21合金在400~450℃进行长时间等温处理后,易获得弥散分布的颗粒状α相,显著提高合金性能,而α相颗粒的形核与马氏体中层错的分布密切相关。正交马氏体在低温时效过程中的具体分解方式为α→α+α富→α+β亚稳→α+β。进一步提高时效温度或时效时间α相颗粒将粗化为片层状,降低合金强度。  相似文献   

15.
针对Inconel 718合金的不同用途,分析研究了4种常用热处理工艺对Inconel 718合金组织和力学性能的影响。结果表明:固溶温度超过1020℃时,奥氏体晶粒显著长大。合金中主要析出相有MC、δ、γ’和γ″相。δ相沿晶界分布,1025℃固溶时呈颗粒状少量析出;950℃固溶时呈块状大量析出;直接时效时呈网状不连续分布。同时,δ相对合金的晶粒度影响较大,且其析出数量和形态决定了合金的韧塑性,γ″、γ’相的析出量和尺寸与晶粒尺寸决定了合金的强度变化。  相似文献   

16.
孙凯  陈研  杨绍斌 《金属热处理》2022,47(4):155-158
SLM成形TC21钛合金经不同温度时效处理后进行显微组织观察和硬度测试,较为系统地探究了时效温度对其组织和硬度的影响。结果表明,时效温度较低时,随着温度的升高,次生α相呈弥散针状析出,且随着温度升高弥散度增大,同时β析出相体积分数也随着温度的升高而增加。时效温度过高时,次生α相粗化,形成尺寸较大的片状α相,强化效果下降。当时效温度为450 ℃时,所得SLM成形TC21钛合金的显微组织最为弥散、均匀,硬度达到最大值575 HV5,较熔凝态硬度提高43.3%。因此,时效温度应控制在450 ℃。  相似文献   

17.
TC21钛合金相变点测定   总被引:2,自引:2,他引:0  
采用计算法和连续升温金相法测定TC21钛合金的α+β→β相转变温度.结果表明,两种方法所得数据非常接近,本实验所选用的TC21钛合金的相变点为(975±5)℃.  相似文献   

18.
利用平面应变压缩实验,研究TC21G钛合金在变形温度为870~940℃、应变速率为0.1~1 s^-1条件下的变形行为,并分析显微组织的演变过程。同时,研究加工参数对应变硬化指数n值的影响。结果表明:在应变速率一定的条件下,随着变形温度的升高,显微组织中β相的含量增加,合金的流变应力降低;而在变形温度一定的条件下,随着应变速率的增加,可动位错的迁移速率增加,从而使合金的流变应力升高。TC21G钛合金在两相区进行变形,随着变形温度的升高,应变量的增加以及应变速率的降低,片层α相的球化程度增加。基于显微组织的分析可知,应变硬化指数n值与绝热升温效应,β相的动态再结晶(DRX)以及动态回复(DRV)有密切的关系。  相似文献   

19.
对TC21钛合金进行双重固溶+时效热处理,研究固溶冷却速率、温度对合金显微组织的影响。研究表明,初生α相形貌主要受一次高温固溶温度控制,高温固溶冷却速率对次生α相含量及长宽比有显著的影响。高的固溶冷却速率可以保留更多的亚稳定β相,从而在时效过程析出更多细小的次生α相,导致强度增加,塑性及韧性下降。二次低温固溶温度对合金后续的时效响应有显著的影响,高的固溶温度可以保留更多的β相,促使更多细小的转变α相在时效中析出;低的固溶热处理温度导致固溶残余β相相含量减小,时效敏感性降低。时效过程导致残余β相的分解,特别是大块亚稳定β相区。  相似文献   

20.
研究了TC21两相钛合金淬火后马氏体在时效过程中的组织结构变化及其引起的强化效应。结果表明:合金淬火后得到交错排列的针状斜方马氏体组织,在300-700℃之间时效4h,α″相的分解次序遵循α″→α″+α→α+β规律。低温时效时首先形核析出针状的初生α相,随着时效温度的升高,初生α相在长大的同时其片层之间析出十几纳米宽、几个微米长的细小次生α相,且β相呈10~50nm大小的颗粒状弥散分布在α相之间,随后的时效过程中次生α相和β相迅速长大,最终斜方马氏体完全分解为α+β混合相。显微硬度分析表明,利用斜方马氏体的逆转变,通过在时效过程中均匀地析出细小的次生α相和纳米级弥散分布的β相可使合金具有明显的时效强化效果,500℃时效4h后,TC21合金的显微硬度比淬火态提高了35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号