首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钴-铁氧体纳米粒子(CoFe2O4 NPs)通过改良的共沉淀法制备,CoFe2O4-SiO2磁性复合材料通过st?ber法合成,为了吸附重金属离子CoFe2O4-SiO2进行了氨基功能化。这种吸附剂的晶体结构、形貌、颗粒尺寸、化学组成和分子结构采用X射线衍射图谱(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FTIR)进行表征。此复合材料具有优良的磁性能,由于其高的饱和磁化强度,磁铁可以将其在30秒内快速分离。同时,CoFe2O4 NPs的磁性能可以通过烧结温度进行调节,随烧结温度提高,磁性能增强。溶液的pH及反应时间对重金属离子吸附的影响进行了研究,此外此吸附剂对Cu (II)、Cd (II)、Mn (II) 和Zn (II)具有较高的吸附容量和去除率,这一结果使此复合材料可以潜在应用于废水中重金属离子的吸附上。  相似文献   

2.
Polyaniline/Fe3O4 nanocomposites were prepared by a one-pot synthesis using N-(4-aminophenyl)aniline as the reagent, molecular oxygen or hydrogen peroxide as the oxidizing agents in the presence of Fe3O4 nanoparticles (NPs) in powder and ferrofluid form. Both magnetic NPs in powder and ferrofluid form showed similar catalytic behaviour. The catalytic effect is particularly evident when molecular oxygen was used as the oxidizing agent. However, concerning the morphological aspects, only the composites prepared in the presence of ferrofluid-type Fe3O4 NPs showed a preferential morphology of nanorods (between 30 and 110 nm in diameter). All the composites are superparamagnetic at room temperature but at low temperature they are in a blocked state. Inter-particle interactions significantly affect the magnetic properties of the composites. The electrical conductivity of the composites is about 10−2 S cm−1, in agreement with the values obtained for polyaniline prepared by chemical route. A mechanism of the nanorods formation is proposed.  相似文献   

3.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

4.
5.
Polypropiolate sodium (PPNa)-Fe3O4 nanocomposites were successfully synthesized by the precipitation of Fe3O4 in the presence of sodium polypropiolate and followed by reflux route. Structural, morphological, electrical and magnetic properties evaluation of the nanocomposite were performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), vibrating scanning magnetometry (VSM) and conductivity measurements. Crystalline phase was identified as magnetite with an average crystallite size of 7 ± 3 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM, by log-normal fitting, is ∼9 ± 1 nm. FT-IR analysis shows that the binding of PPNa on the surface of iron oxide is through bidentate linkage of carboxyl group. TGA analysis showed the presence of 20% PPNa around 80% magnetic core (Fe3O4)…PPNa-Fe3O4 nanocomposite show superparamagnetic characteristics at room temperature. It is found that the a.c. conductivity of the nanocomposites obeys the well-known power law of frequency in which it also depends on temperature. Additionally, its d.c. conductivity showed that two operating regions of the activation energy. Both real and imaginary parts of either permittivity exhibit almost the same attitudes which are the indication of the same ability in the stored energy, and dissipation of energy within the PPNa and PPNa-Fe3O4 nanocomposites.  相似文献   

6.
In this paper, we report on the bifunctional Fe3O4@SiO2@YP0.1V0.9O4:Dy3+ nanocomposites were prepared by the solvothermal method and sol-gel method. The structure, photoluminescence (PL) and magnetic properties of the nanocomposites were characterized by means of X-ray diffraction, scanning electron microscope, transmission electron microscope, PL excitation and emission spectra and vibration sample magnetometry. It is shown that Fe3O4@SiO2@YP0.1V0.9O4:Dy3+ nanocomposites with a core-shell structure present excellent fluorescent and magnetic properties. Additionally, the effects of the magnetic field on the luminescence properties of nanocomposites were discussed.  相似文献   

7.
In this present work, La10(SiO4)6O3 as a promising electrolyte candidate for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been synthesized and its electrical property was investigated as a function of temperature. In order to improve the density and oxide ion conductivity of La10(SiO4)6O3, the feedstock powder was prepared by sintering the oxide mixture powders at proper sintering temperatures and times. The hexagonal apatite-type ceramic coatings with a typical composition of La10(SiO4)6O3 were deposited by atmospheric plasma spraying (APS) with different hydrogen flow rates. With increasing hydrogen flow rate oxide ion conductivity successively decreases. The highest ionic conductivity of the dense composite electrolyte coatings reaches a value of 2.4 mS/cm at 900 °C in air, which is comparable to other apatite-type lanthanum silicate (ATLS) conductors.  相似文献   

8.
Polypyrrole (PPY)/nano-SrFe12O19 composites were synthesized by in situ polymerization method. The samples were characterized by TEM, SEM, XRD and IR technology. Spherical, conglobulation-like and arborization-like polypyrrole/SrFe12O19 composites were synthesized in an emulsion polymerization system for the first time. It was found that the morphology of PPY/nano-SrFe12O19 composites depended on the SrFe12O19 content of the reaction system. A possible mechanism for the formation of the different morphologic composites had been proposed. It was found that the saturation magnetization (MS) and remanent magnetization (Mr) for the composites decreased with the decrease of the nano-SrFe12O19 content. The coercivity force (Hc) for the composites increased with the increase of PPY content when the PPY content was at a low value, and then decreased with the increase of PPY content. The possible mechanism for the phenomenon had been proposed. The conductivity was measured, and the variation mechanism of the composites conductivity was analyzed in the paper.  相似文献   

9.
The magnetic nanocomposites of (1 − x)Ni0.5Zn0.5Fe2O4/xSiO2 (x = 0-0.2) were synthesized by the citrate-gel process and their absorption behavior of bovine serum albumin (BSA) was investigated by UV spectroscopy at room temperature. The gel precursor and resultant nanocomposites were characterized by FTIR, XRD, TEM and BET techniques. The results show that the single ferrite phase of Ni0.5Zn0.5Fe2O4 is formed at 400 °C, with high saturation magnetization and small coercivity. A porous, amorphous silica layer is located at the ferrite nanograin boundaries, with the silica content increasing from 0 to 0.20, the average grain size of Ni0.5Zn0.5Fe2O4 calcined at 400 °C reduced from about 18-8 nm. Consequently, the specific surface area of the nanocomposites ascends clearly with the increase of silica content, which is largely contributed by the increase in the thickness of the porous silica layer. The Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites demonstrate a better adsorption capability than the bare Ni0.5Zn0.5Fe2O4 nanoparticles for BSA. With the increase of the silica content from 0 to 0.05 and the specific surface area from about 49-57 m2/g, the BSA adsorption capability of the Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites calcined at 400 °C improve dramatically from 22 to 49 mg/g. However, with a further increase of the silica content from 0.05 to 0.2, the specific surface area increase from about 57-120 m2/g, the BSA adsorption for the nanocomposites remains around 49 mg/g, owing to the pores in the porous silica layer which are too small to let the BSA protein molecules in.  相似文献   

10.
V2O5/NaV6O15 nanocomposites were synthesized by a facile hydrothermal method using VO2(B) nanoarrays as the precursor. X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and galvanostatic charge−discharge test were used to evaluate the structures, morphologies and electrochemical performance of samples, respectively. The results show that the nanocomposites are composed of one-dimensional nanobelts, preserving the morphology of the precursor well, and the hydrothermal reaction time has a significant effect on the phase contents and electrochemical performance of the composites. Compared with pure V2O5, V2O5/NaV6O15 nanocomposites exhibit enhanced electrochemical performance as cathode for sodium-ion batteries. It should be ascribed to the synergistic effect between V2O5 with high capacity and NaV6O15 with good cycling performance, and the introduced massive interfacial areas which can provide additional ion storage sites and improve the electronic and ionic conductivities.  相似文献   

11.
A novel poly(o-anisidine) (POA)/CoFe2O4 nanocomposite was synthesized by a facile in situ polymerization of o-anisidine in the presence of CoFe2O4 nanoparticles which were obtained by a simple refluxing process in ethylene glycol. The structures of the resulting nanocomposite were investigated by means of X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra. The optical, thermal and magnetic properties of the POA/CoFe2O4 nanocomposite were characterized by UV–visible spectrometer, thermogravimetry analyzer (TGA) and vibrating sample magnetometer (VSM). It was indicated the existence of CoFe2O4 in the POA/CoFe2O4 nanocomposite. The scanning electron microscopy (SEM) observation illustrated that POA layers were wrapped on the surface of CoFe2O4 nanoparticles appearing as small aggregated globules. The POA/CoFe2O4 nanocomposite exhibited a ferromagnetic behavior under applied magnetic field at room temperature. The saturation magnetization of POA/CoFe2O4 nanocomposite was lower than that of pure CoFe2O4 nanoparticles due to the contribution of non-magnetic POA layers.  相似文献   

12.
BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites were prepared by a solid-state reaction method, and their dielectric and tunable characteristics were investigated for the potential application as microwave tunable materials. It is observed that the addition of Mg2SiO4-MgO into BaZr0.2Ti0.8O3 form ferroelectric (BaZr0.2Ti0.8O3)-dielectric (Mg2SiO4-MgO) composites. The dielectric constant and loss tangent of BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have been reduced and the overall tunability is maintained at a sufficiently high level. An anomalous relation between dielectric constant and tunability was observed: with the increase of Mg2SiO4 content (>30 wt%), the dielectric constant of composite decreases and the tunability increases. The anomalous increased tunability can be attributed to redistribution of the electric field. BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have tunability of 14.2-17.9% at 100 kHz under 2 kV/mm, indicating that it is a promising candidate material for tunable microwave applications requiring low dielectric constant.  相似文献   

13.
A facile direct precipitation method has been developed for the synthesis of bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core-shell structure and a spherical morphology. The average size was ∼150 nm, and the thickness of the shell was ∼15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. Fourier transform infrared (FT-IR) spectra confirmed that the YVO4:Eu3+ had been successfully deposited on the surface of Fe3O4 nanoparticles. Photoluminescence (PL) spectra indicated that the nanocomposites displayed a strong red characteristic emission of Eu3+. Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior at room temperature. Therefore, the bifunctional nanocomposites are expected to develop many potential applications in biomedical fields.  相似文献   

14.
《Synthetic Metals》2006,156(16-17):1139-1147
New types of conducting polyaniline–niobium pentoxide (PANI/Nb2O5) nanocomposites have been synthesized by in situ deposition technique by placing fine grade powder of Nb2O5 during in situ polymerization of aniline. The composites formed were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). XRD and TEM indicated the dominant role-played by Nb2O5 particles, whereas XPS indicated incomplete protonation of imine moieties. SEM images indicated a systematic morphological variation of particles aggregated in the composite matrix as compared to the pristine PANI. Three step decomposition patterns were observed for PANI and its composites. AC conductivity and dielectric response of the composites were investigated in the frequency range, 102–106 Hz. AC conductivity obeyed the power law index, which decreased with increasing wt.% of Nb2O5. PANI showed high dielectric constant, which could be related to conductivity relaxation phenomenon. Both dielectric constant and dielectric loss decreased with increasing wt.% of Nb2O5. Variations in measured AC response parameters with increasing Nb2O5 contents of the composite followed systematic trends that are similar to those observed with decreasing temperature and level of doping.  相似文献   

15.
TiC/Hastelloy复合材料是极具应用前景的中温固体氧化物燃料电池连接体材料,而抗氧化性能是影响其应用的关键性能之一。通过无压反应渗透工艺分别制备出含有50vol%和58vol%金属基体的TiC/Hastelloy复合材料。高金属含量使复合材料中的Cr含量增加,促进连续Cr2O3氧化层的形成,抑制Ni和Ti原子的外扩散,进而优化复合材料的抗氧化性能。氧化膜中Ti和Ni的氧化物含量降低,复合材料的氧化增重由2.03 mg·cm-2降低到0.55 mg·cm-2。同时,为了抑制Cr挥发,在含有58vol%金属基体的TiC/Hastelloy复合材料中引入Co。在氧化过程中,Co和金属基体中的Fe在Cr2O3氧化层中具有较快的扩散速率,可以在Cr2O3氧化层外侧原位形成CoFe2O4层。  相似文献   

16.
17.
In situ magnetic annealing effects on c-axis-preferred multiferroic BiFeO3/CoFe2O4 bilayered by chemical solution deposition route are investigated. It is observed that magnetic annealing can enhance the crystallization quality, texture and densification as well as dielectric properties. In addition, the magnetolosses decrease with increasing the magnetic fields. Moreover, both increase of the polarization and decrease of the leakage current due to magnetic annealing are beneficial for potential applications of BiFeO3 films.  相似文献   

18.
采用固-液相共混法制备了多种BN/Al2O3复合粉末,通过冻融法和表面修饰法对BN进行了改性处理,改变表面修饰剂类型和摩尔比得到了前驱体和烧结态BN/Al2O3复合粉末,并利用机械混合法制备了聚合物基BN/Al2O3复合材料,并测试分析了其导热性能。结果表明,经冻融处理的BN分散性和界面相容性明显优于未经冻融处理的BN。多巴胺对BN的改性效果优于聚乙二醇。采用多巴胺作为表面修饰剂且BN与Al(NO3)3的摩尔比为1:1时,能够得到纳米Al2O3均匀包覆的微米BN粉末,即BN/Al2O3微纳复合粉末,其聚合物基复合材料的导热系数可达0.62 W·m-1·K-1,是纯聚合物导热系数的3倍,是采用纯微米BN粉末制备的聚合物基复合材料导热系数的1.5倍。在BN表面附着的Al2O3可以形成层状热传导通道,能够有效提高聚合物基BN/Al2O3复合材料的热导率。  相似文献   

19.
Li2O–MoO3–B2O3 glasses containing different amounts of V2O5, ranging from 0 to 1.5 mol%, were prepared. The dielectric properties (viz., constant ′, loss tan δ, AC conductivity σac over a wide range of frequency and temperature) have been studied as a function of the concentration of vanadium ions. The variation of AC conductivity with the concentration of V2O5 passes through a maximum at 0.8 mol% V2O5. In the high-temperature region, the AC conduction seems to be connected with the mixed conduction, viz., electronic and ionic conduction. The dielectric relaxation effects exhibited by these glasses have been analyzed quantitatively by pseudo Cole–Cole plot method and the spreading of relaxation times has been established. Further analysis of these results has been carried out with the aid of the data on ESR, IR and optical absorption spectra.  相似文献   

20.
Conductive polyaniline (PANi)-manganese ferrite (MnFe2O4) nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA) as the surfactant and dopant and ammonium persulfate (APS) as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively. Its morphology, microstructure and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and four-wire-technique, respectively. The microwave absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.4 mm were investigated by using vector network analyzers in the frequency range of 8-12 GHz. A minimum reflection loss of −15.3 dB was observed at 10.4 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号