首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the advent in 2004, high-entropy alloys (HEAs) have been attracting a great deal of research interest worldwide. Being deemed as a major paradigmatic shift, the design of HEAs without base elements poses challenges to the existing thermodynamic models and theories that were long established for traditional alloys, one of which is related to the thermodynamic mechanisms for the formation of random solid solution in a concentrated multicomponent alloy. In this article, we discuss the design of HEAs from the perspective of correlated mixing (nonideal mixing of atoms with interatomic correlations). In a quantitative manner, we can show that the formation of a random solid solution in HEAs depends not only on the number of constituent elements but also on the alloy’s melting/processing temperature and on various interatomic correlations. Through the correlated mixing rule, we further demonstrate a strategy to screen out equiatomic alloys with the thermodynamic characteristics close to those of random solid solutions from an expanded library of 20 candidate elements.  相似文献   

2.
高熵合金是近年来快速发展的一种新型合金,其成分设计突破了传统合金的设计理念,是合金理论发展的一个新方向.高熵合金所具有的高熵效应、晶格畸变效应、缓慢扩散效应和鸡尾酒效应在焊接领域表现出独特的应用价值,前景十分广阔.文中总结了国内外利用高熵合金四大效应开发焊接材料与工艺的研究现状和存在的问题,并对未来发展方向进行了展望.  相似文献   

3.
4.
Recent review articles on high entropy alloys (HEAs) provide little information about miscibility gaps in multicomponent systems, especially about how to respond with alloying should they be found. Also, there is a lack of information about how miscibility gaps might appear on calculated or measured multicomponent phase diagrams. In this work concepts concerning miscibility gaps that form in binary and ternary systems are reviewed. Then the work is extended to alloys with more components including HEAs. The previous work predicts that there are significant differences between binary systems and those with three or more components. For example, miscibility gaps do not form in binary systems that have a negative heat of mixing, but they do form in ternary systems. Also, ternary systems with a positive heat of mixing can have their stability temperature lowered by adding ternary components that add positive heats of mixing. The morphology and topology of multicomponent/multiphase miscibility gaps differ from typical phase diagrams, as well. For example, one type of miscibility gap is said to have the rose geometry, because of its floral design. Normally only 2-phase miscibility gaps can form in binary and ternary systems. However using the Graph Method it is suggested that 3-phase miscibility gaps might form in HEA systems, even while trying to avoid them. A conclusion of this investigation is that with additional computational and experimental work it may be possible to expand the boundaries of where HEAs can be found.  相似文献   

5.
高熵合金是一种具有优异物理化学性能的新型合金,其中含有轻质元素的轻质高熵合金具有较高的比强度和比硬度及耐蚀性能等突出特点,其潜在的工程应用价值引起了人们的关注。因此,本文详细阐述了轻质高熵合金的研究现状,归纳了轻质高熵合金的组元设计规则与方法,分析了轻质高熵合金的微观相结构,总结了高熵合金的各种性能,探讨了轻质高熵合金目前存在的问题,并提出了轻质高熵合金的发展趋势。  相似文献   

6.
Attributing to the attractive mechanical properties, e.g., high yield strength and fracture toughness, the atomic and electronic basis for high entropy alloys (HEAs) are under extensive studies. In the present work, the local atomic arrangement of body-centered-cubic (BCC) equiatomic HEAs are revealed by the CN14 cluster-plus-glue-atom model and the 32 atoms special quasirandom structures. Moreover, the cluster-plus-glue-atom model is utilized to generate ordered and disordered configurations. The bonding lengths among the same and different alloying elements are comprehensively compared in term of their partial pair correlation function (PCF). According to the specific (well-defined) position of each partial PCF of the BCC structure, the order–disorder/random configurational transitions are revealed by the absence of partial PCF peaks. Here, the WMoTM1TM2 (TM = Ta, Nb, and V) BCC equiatomic refractory HEAs are selected as a case study. Through mixing various groups of alloying elements, the atomic-size differences not only result in the lattice mismatch/distortion but also yield the formation of weak spots. Their bonding-charge density captures the electron redistributions caused by the coupling effect of the lattice distortion and valance electron differences among various elements, which also presents the physical nature of the loosely-bonded weak spots and the tightly-bonded clusters. It is worth mentioning that both the PCF and the negative enthalpy of mixing can be utilized to characterize the clusters or the short range ordering in the HEAs. The microstates revealed by the cluster-plus-glue-atom model are in line with the novel small set of the ordered structures method reported in the literature.  相似文献   

7.
High-entropy alloys (HEAs) with an atomic arrangement of a hexagonal close-packed (hcp) structure were found in YGdTbDyLu and GdTbDyTmLu alloys as a nearly single hcp phase. The equi-atomic alloy design for HEAs assisted by binary phase diagrams started with selecting constituent elements with the hcp structure at room temperature by permitting allotropic transformation at a high temperature. The binary phase diagrams comprising the elements thus selected were carefully examined for the characteristics of miscibility in both liquid and solid phases as well as in both solids due to allotropic transformation. The miscibility in interest was considerably narrow enough to prevent segregation from taking place during casting around the equi-atomic composition. The alloy design eventually gave candidates of quinary equi-atomic alloys comprising heavy lanthanides principally. The XRD analysis revealed that YGdTbDyLu and GdTbDyTmLu alloys thus designed are formed into the hcp structure in a nearly single phase. It was found that these YGdTbDyLu and GdTbDyTmLu HEAs with an hcp structure have delta parameter (δ) values of 1.4 and 1.6, respectively, and mixing enthalpy (ΔH mix) = 0 kJ/mol for both alloys. These alloys were consistently plotted in zone S for disordered HEAs in a δH mix diagram reported by Zhang et al. (Adv Eng Mater 10:534, 2008). The value of valence electron concentration of the alloys was evaluated to be 3 as the first report for HEAs with an hcp structure. The finding of HEAs with the hcp structure is significant in that HEAs have been extended to covering all three simple metallic crystalline structures ultimately followed by the body- and face-centered cubic (bcc and fcc) phases and to all four simple solid solutions that contain the glassy phase from high-entropy bulk metallic glasses.  相似文献   

8.
《Intermetallics》2000,8(5-6):455-468
For the last decade, bulk glassy alloys have been developed in a number of multicomponent alloy systems and have already gained practical applications. Although the bulk glassy alloys in Zr-based systems have high strength and good toughness, it has been found that the addition of special elements to the Zr-based glassy alloys causes the formation of a nanoscale mixed structure consisting of nanoscale intermetallic particles embedded in a glassy matrix and the mixed phase alloys exhibit higher mechanical strength and larger elongation as compared with the corresponding glassy single phase alloys. In particular, the bulk nanoscale mixed phase alloys in the Zr–Al–Ni–Cu–Nb system produced by squeeze casting exhibit extremely high bending flexural strength of 4400 MPa without fracture during the three point bending test. The mechanism for the formation of the nanoscale mixed structure for the alloys containing special additional elements as well as the reason for the remarkable improvement in the mechanical properties has been discussed on the basis of experimental results obtained by high-resolution TEM, nanobeam EDX spectroscopy, atom probe FIM and small angle X-ray scattering, in addition to DSC, ordinary TEM and X-ray diffraction.  相似文献   

9.
A regular solution, 3-component model suggested by J.L. Meijering in which binary interaction parameters were equal and positive has been extended to 5 and 6-component high entropy alloys (HEAs). On cooling, Meijering’s model develops miscibility gaps containing a low temperature eutectoid at the equiatomic composition. Similar behavior is found in this work on HEAs with the eutectoid temperature decreasing, while both the entropy and enthalpy are increasing, as additional components are added to the system. An equation for the chemical spinodal at the equiatomic composition is derived from the same thermodynamic model that was used to predict miscibility gaps. The spinodal temperature is at a cone point where multiple spinodal surfaces meet and is dominated by entropy. A proposal is made to categorize HEAs as having low, medium or high enthalpy. Low enthalpy HEAs are defined as having mixing enthalpies less than 1.25 kJ/mol, high enthalpy HEAs having mixing enthalpies greater than 2.9 kJ/mol, and medium HEA as between the extremes. A possible approach for designing high enthalpy HEAs is suggested to incorporate Meijering’s method of analyzing potential HEAs according to their individual binary interaction parameters instead of their total mixing enthalpy.  相似文献   

10.
Pettifor map for binary compounds with 1:1 stoichiometry was utilized as an alloy design for high-entropy alloys (HEAs) with exact or near equi-atomicity in multicomponent systems. Experiments started with selecting GuGd binary compound with CsCl structure from Pettifor map, followed by its extensions by selecting the binary compounds with the same CsCl structure to CuDyGdTbY equi-atomic quinary alloy and to Cu4GdTbDyY and Ag4GdTbDyY quinary alloys and Cu2Ag2GdTbDyY senary alloy in sequence. X-ray diffraction revealed that CuDyGdTbY alloy was formed into a HEA with mixture of bcc, fcc and hcp structures, whereas the Cu2Ag2GdTbDyY HEA was a single CsCl phase. The results suggest a potential of Pettifor map for the development of HEAs by utilizing its information of crystallographic structures. The further analysis was performed for composition diagrams of multicomponent systems corresponding to simplices in a high dimensional space. The present results revealed that a strategy of equi-mole of compounds instead of conventional equi-atomicity also works for the development of HEAs.  相似文献   

11.
Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. The model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.  相似文献   

12.
Alloy Design and Properties Optimization of High-Entropy Alloys   总被引:2,自引:0,他引:2  
This article reviews the recent work on the high-entropy alloys (HEAs) in our group and others. HEAs usually contain five or more elements, and thus, the phase diagram of HEAs is often not available to be used to design the alloys. We have proposed that the parameters of ?? and ?? can be used to predict the phase formation of HEAs, namely ??????1.1 and ??????6.6%, which are required to form solid-solution phases. To test this criterion, alloys of TiZrNbMoV x and CoCrFeNiAlNb x were prepared. Their microstructures mainly consist of simple body-centered cubic solid solutions at low Nb contents. TiZrNbMoV x alloys possess excellent mechanical properties. Bridgman solidification was also used to control the microstructure of the CoCrFeNiAl alloy, and its plasticity was improved to be about 30%. To our surprise, the CoCrFeNiAl HEAs exhibit no apparent ductile-to-brittle transition even when the temperatures are lowered from 298?K to 77?K.  相似文献   

13.
Mechanical properties of high-entropy alloys (HEAs) with the face-centered cubic (fcc) structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlying plastic flow mecha-nisms of such alloys are not yet well understood.Here,deformation of the equiatomic FeMnCoCrNi HEA with various initial orientations under uniaxial tensile testing has been studied by using atomistic simulations,showing the results consistent with the recent experiments on fcc HEAs.The quantitative analysis of the activated deformation modes shows that the ini-tiation of stacking faults is the main plastic deformation mechanism for the crystals initially oriented with[001],[111],and[112],and the total dislocation densities in these crystals are higher than that with the[110]and[123]orientations.Stacking faults,twinning,and hcp-martensitic transformation jointly promote the plastic deformation of the[110]orientation,and twinning in this crystal is more significant than that with other orientations.Deformation in the crystal oriented with[123]is dominated by the hcp-martensite transformation.Comparison of the mechanical behaviors in the FeMnCoCrNi alloy and the conventional materials,i.e.Cu and Fe50Ni50,has shown that dislocation slip tends to be activated more readily in the HEA.This is attributed to the larger lattice distortion in the HEA than the low-entropy materials,leading to the lower criti-cal stress for dislocation nucleation and elastic-plastic transition in the former.In addition,the FeMnCoCrNi HEA with the larger lattice distortion leads to an enhanced capacity of storing dislocations.However,for the[001]-oriented HEA in which dislocation slip and stacking fault are the dominant deformation mechanisms,the limited deformation modes activated are insufficient to improve the work hardening ability of the material.  相似文献   

14.
Recently, high-entropy alloys (HEAs) have attracted much interest in the materials community, as they offer massive opportunities to observe new phenomena, explore new structure, and develop new materials. Particularly, it is attractive to prepare high-performance HEA coatings by laser-induced rapid solidification, which can be formed on the surface of components and parts in a variety of sizes and shapes with a lower cost in comparison with those bulk material fabrication methods. From the technical point of view, laser-induced rapid solidification could hamper the compositional segregation, improve the solubility in solid-solution phases, and lead to the strengthening effect by the grain refinement. This article reviews the recent work on the typical microstructural features and the mechanical and chemical properties in laser-induced rapidly solidified HEAs, and these data are compared with conventional Co- and Ni-based alloy coatings. The article concludes with suggestions for future research and development in HEAs, from considerations of their characteristic properties.  相似文献   

15.
High-entropy alloys(HEAs) are a new class of materials with a potential engineering application,but how to obtain ultrafine or nano-sized crystal structures of HEAs has been a challenge.Here,we first presented an equiatomic CoCrFeNiCu HEA with excellent mechanical properties obtained via friction stir processing(FSP).After FSP,the Cu element segregation in the cast CoCrFeNiCu HEA was almost eliminated,and the cast coarse two-phase structure(several micrometers) was changed into an ultrafine-grained single-phase structure(150 nm) with a large fraction of high-angle grain boundaries and nanoscale deformation twins.This unique microstructure was mainly attributed to the severe plastic deformation during FSP,and the sluggish diffusion effect in dynamics and the lattice distortion effect in crystallography for HEAs.Furthermore,FSP largely improved the hardness and yield strength of the CoCrFeNiCu HEA with a value of 380 HV and more than 1150 MPa,respectively,which were 1.5 times higher than those of the base material.The great strengthening after FSP was mainly attributed to the significant grain refinement with large lattice distortion and nano-twins.This study provides a new method to largely refine the microstructure and improve the strength of cast CoCrFeNiCu HEAs.  相似文献   

16.
We present a brief overview on recent developments in the field of strong and ductile non-equiatomic high-entropy alloys (HEAs). The materials reviewed are mainly based on massive transition-metal solute solutions and exhibit a broad spectrum of microstructures and mechanical properties. Three relevant aspects of such non-equiatomic HEAs with excellent strength–ductility combination are addressed in detail, namely phase stability-guided design, controlled and inexpensive bulk metallurgical processing routes for appropriate microstructure and compositional homogeneity, and the resultant microstructure–property relations. In addition to the multiple principal substitutional elements used in these alloys, minor interstitial alloying elements are also considered. We show that various groups of strong and ductile HEAs can be obtained by shifting the alloy design strategy from single-phase equiatomic to dual- or multiphase non-equiatomic compositional configurations with carefully designed phase instability. This design direction provides ample possibilities for joint activation of a number of strengthening and toughening mechanisms. Some potential research efforts which can be conducted in the future are also proposed.  相似文献   

17.
Quinary exact equi-atomic MnFeNiCuPt and MnFeNiCuCo alloys were investigated to examine their formation of high-entropy alloys (HEAs) by focusing on an L10 structure from Pettifor map for binary compounds with 1:1 stoichiometry. The MnFeNiCuPt alloy was practically selected through computer-assisted alloy design under conditions of ≤ 20 at% noble metals, and the condition that the L10 structure appears as frequently as possible in the constituent binary equi-atomic compositions comprised of 78 elements. MnFeNiCuCo was selected by substituting Pt with Co from the MnFeNiCuPt alloy as the second candidate. X-ray diffraction and observations by scanning electron microscopy (by energy dispersive spectroscopy for composition analysis) revealed that as-prepared MnFeNiCuPt and MnFeNiCuCo alloys were formed into HEAs with dual fcc structures containing dendrites of ∼10 μm in width. The MnFeNiCuPt and MnFeNiCuCo alloys annealed at 1373 K for 43.2 ks and subsequently quenched in water formed single fcc phases and dual fcc phases, respectively. The annealed MnFeNiCuPt and MnFeNiCuCo alloys were subsequently cooled in a furnace and formed single L12 ordered phases and dual fcc phases, respectively. These phases, experimentally observed in the annealed samples, could be partially explained by thermodynamic calculations using Thermo-Calc with SSOL4 and SSOL5 databases for solid solutions. The MnFeNiCuPt and MnFeNiCuCo alloys exhibit soft magnetism with saturation magnetization of 0.23 and 0.43 T, respectively, with coercivity values of ∼1 kA m−1. An alloy design for HEAs based on digitalized crystallographic data of these samples could lead to the discovery of new HEAs.  相似文献   

18.
The development of high-entropy alloys(HEAs) has stimulated an ever-increasing interest from both academia and industries.In this work, three novel MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi HEAs containing low thermal neutron absorption cross section elements were prepared by vacuum arc melting. The microstructure, mechanical properties, and corrosion behaviors were investigated. A dominant body-centered cubic(BCC) phase was present in all these three HEAs. In addition,an ordered Laves phase was found to be another major phase in both MoNbFeCrV and MoNbFeCrTi alloys, whereas an ordered BCC(B2) phase was observed in the MoNbFeVTi alloy. The phase formation in these three alloys was discussed. It is found that the formation of the secondary phase in these alloys is mainly ascribed to the large atomic size difference and electronegativity difference. All the three HEAs show high hardness, high yield strength but limited plasticity. Moreover, the MoNbFeCrV, MoNbFeCrTi and MoNbFeVTi alloys exhibit excellent corrosion resistance in both deaerated 1 mol/L NaCl and 0.5 mol/L H _2 SO _4 solutions at room temperature. However, further composition adjustment and/or thermomechanical processing is required to enhance the mechanical properties of the three alloys.  相似文献   

19.
Bidirectional transformations, which are achieved by triggering both dynamic forward transformation from the face-centered-cubic (fcc) austenite to the hexagonal-close-packed (hcp) martensite and the reverse transformation from martensite to austenite during cold deformation, have been previously reported in FeMnCoCr-based high-entropy alloys (HEAs). This leads to the permanent refinement of microstructure and hence enhances the work-hardening capacity of alloys. In order to reveal the microscopic mechanism of the reverse transformation in HEAs under deformation, the effect of the sample aspect ratio, i.e., Z/X, on the evolution of deformation systems in the equi-atomic FeMnCoCrNi alloy with [110] orientation during uniaxial tensile loading along the Z direction is investigated by atomic simulations in this study. When the aspect ratio is 0.5, the reverse transformation is more significant compared with other models, while a good plasticity can still be maintained. We then compare the micromechanical behavior of three fcc single crystals, i.e., FeMnCoCrNi, FeCuCoCrNi, and pure Cu. The results show that the stacking fault energy plays a major role in the activation of different deformation mechanisms; however, the lattice distortion in the HEA does not significantly affect the activation of deformation systems. Furthermore, for all materials dislocation slip leads to the softening, while strain hardening is attributed to the initiation of multiple deformation mechanisms. The Shockley partials slip leads to bidirectional phase transition, twinning and detwinning in the three materials. Thus, the reverse transformation can occur in all metallic materials where the fcc to hcp phase transformation is the dominant deformation mechanism. These findings contribute to an in-depth understanding of the deformation mechanism in fcc-structured materials under severe plastic deformation and provide theoretical guidance for the design of alloys with superior strength-plasticity combinations.  相似文献   

20.
FeNiCrCoSix and FeNiCrCoTix (x=0, 0.3, 0.6, and 0.9 wt.%) high entropy alloys (HEAs) were prepared via the powder metallurgy technique. A homogenous distribution of the elements in all alloys due to the formation of a solid solution phase is observed. The density and hardness of the prepared HEAs are improved by Si and Ti additions, compared to FeNiCrCo HEA. The wear rate of the prepared alloys was studied at different loads and the results indicate that the alloys that contain 0.3 wt.% Si and 0.9 wt.% Ti have the lowest wear rates. X-ray diffraction, SEM, and EDX were used to understand the phases, grain sizes, and microstructures in different investigated HEAs. The effects of Si and Ti content on the corrosion behavior and surface morphologies of sintered FeNiCrCoSix and FeNiCrCoTix HEAs were studied by immersion in H2SO4, HNO3, and HCl solutions. Uniform corrosion and localized pitting are observed in different sizes in the corrosive media used. Because of the smaller pit size and the reduced pit density, the FeNiCrCoSi0.3 HEA has an excellent microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号