首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高TA2钛合金的耐磨性和耐蚀性,采用激光相变硬化-气体渗氮工艺对TA2钛进行表面改性。利用体视光学显微镜、透射电镜和X射线衍射仪对TA2激光相变硬化-气体渗氮层进行表面形貌、微观组织和相组成分析;利用显微硬度计对两种复合改性层的显微硬度进行测试。结果表明:TA2钛表面经激光相变硬化后,可实现430℃低温渗氮。此条件下晶粒得到细化,亚结构和缺陷密度的增加有利于氮元素和晶内扩散,相变组织与氮势梯度具有良好的对应关系。通过改善渗层的组织结构和化学成分分布状态,获得了性能优良的TA2钛表面硬化层。  相似文献   

2.
以热等离子束作为等离子源,以氮气、氢气混合气体作为工作气体,对工业纯钛进行表面渗氮处理,并利用显微硬度仪、X射线衍射仪、扫描电镜、金相显微镜分别对氮化后试样进行显微硬度测定、相结构及断面形貌分析。结果表明:在等离子束对试样进行15min的照射后即可在工业纯钛(TA2)表面获得具有一定厚度的硬度较高的氮化层。  相似文献   

3.
热等离子束照射工业纯钛快速渗氮制备表面氮化层   总被引:1,自引:0,他引:1  
以热等离子束作为等离子源,以氮气、氢气混合气体作为工作气体,对工业纯钛进行表面渗氮处理,并利用显微硬度仪、X射线衍射仪、扫描电镜、金相显微镜分别对氮化后试样进行显微硬度测定、相结构及断面形貌分析.结果表明:在等离子束对试样进行15 min的照射后即可在工业纯钛(TA2)表面获得具有一定厚度的硬度较高的氮化层.  相似文献   

4.
目的提高TA2在草酸溶液中的耐蚀性,揭示表面充氢提高钛在草酸溶液中耐腐蚀性能的机理。方法采用电化学充氢的方法对TA2试样进行表面充氢,采用SEM和XRD分析充氢对试样表面形貌和相组成的影响,并采用电化学测试和腐蚀浸泡实验研究不同充氢时间的TA2试样在草酸溶液中的耐蚀性。结果电化学充氢后,TA2试样表面会生成一层以Ti H1.5为主要组成相的氢化钛层,该氢化钛层的厚度随充氢时间的延长而增厚。电化学测试结果显示,随着充氢时间的延长,TA2试样在草酸溶液中的自腐蚀电位从–0.7 V(vs.SCE)逐渐增加到0 V左右,腐蚀倾向显著下降;极化电阻Rp则从0.2 kΩ·cm^2逐渐增加到了24.1 kΩ·cm^2,耐蚀性能增强。腐蚀浸泡实验结果表明,随着充氢时间的延长,TA2试样在草酸溶液中的腐蚀程度逐渐减弱,腐蚀速率也从未充氢时的4.63mm/a逐渐下降到0.03mm/a。结论在草酸溶液中,电化学充氢TA2试样表面生成的氢化钛层对Ti基体具有保护作用,并且保护效果随氢化钛层的增厚而增强。试样表面氢化钛层对Ti基体的保护作用除了与成分有关外,还与其结构相关,完整致密的氢化钛层可以对Ti基体起到很好的保护作用,而疏松多孔的氢化钛不仅不能保护Ti基体,反而还会促进Ti基体的腐蚀。  相似文献   

5.
研究了离子渗氮处理工业纯钛TA2与硬质材料对磨的磨损性能。采用球盘摩擦磨损试验机评价摩擦学性能,选取了3种硬度的对磨副材料Si O2、Al2O3、Zr O2。利用光学显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对渗氮前后TA2的微观组织结构和硬度进行表征,并分析磨痕的表面形貌及元素组成。结果表明,渗氮后TA2表面生成了80μm厚的Ti N、Ti2N和α-Ti(N)硬质相渗氮层,表面硬度由140 HV提高至1260 HV,耐磨性能得到了提高。未处理样品的磨损机制主要是严重的黏着磨损、塑性形变和一定程度的磨粒磨损;渗氮样品的磨损机制主要为磨粒磨损,磨损率随对磨副材料硬度的升高而增大。  相似文献   

6.
不同压力对 TC4 钛合金真空脉冲渗氮的影响   总被引:1,自引:0,他引:1  
杨闯  刘静  马亚芹  洪流 《表面技术》2015,44(8):76-80,114
目的采用不同压力对TC4钛合金进行真空脉冲渗氮处理,提高其表面硬度及耐磨性。方法通过金相显微镜、X射线衍射仪、显微硬度计及耐磨试验机分析渗氮硬化层的组织与性能。结果 TC4钛合金经过真空气体渗氮处理后,形成了由Ti N,Ti2Al N和钛铝金属间化合物Ti3Al组成的复合改性层。渗氮压力太低,表面氮化物数量较少,氮化物层较薄;随渗氮压力的增大,表面氮化物数量增多,表面硬度及耐磨性增加。压力为0.015 MPa时,氮化物层表面硬度最大,表面硬度为1100~1200HV,有效硬化层深度为50~60μm。渗氮压力继续增加,表层组织变得疏松,表面硬度及耐磨性开始降低。结论选择合适的渗氮压力和表面氮浓度进行真空脉冲渗氮,可以提高钛合金表面硬度,改善耐磨性。  相似文献   

7.
为研究工业纯钛TA2经离子渗氮技术处理后的真空摩擦磨损性能,利用光学显微镜、白光三维形貌仪、X射线衍射仪和显微硬度计分别对渗氮前后材料的微观结构、表面形貌及表面粗糙度、相组成和硬度进行表征。采用真空摩擦磨损试验机对TA2渗氮前后的摩擦磨损性能测试后,使用白光三维形貌仪、扫描电镜及其附带能谱仪分析磨痕的表面形貌及磨痕表面的元素组成。结果表明:离子渗氮后,TA2表面形成的渗氮层主要由Ti N、Ti2N和α-Ti(N)等硬质相组成,厚度约为80μm,且表面HV硬度由1.40 GPa提升至12.60 GPa;离子渗氮处理使TA2在真空环境中的摩擦系数和磨损体积显著降低,从而有效减摩抗磨;然而在大气条件下,渗氮层的形成导致材料的摩擦系数和耐磨性均显著提高;此外,离子渗氮后材料的磨损机制也发生显著改变:在大气条件下,渗氮后样品的磨损机制由原始样品的磨料磨损、塑性形变及轻微粘着磨损共同作用转化为严重塑性形变、粘着磨损和材料转移,而在真空环境中,原始样品表面主要发生了粘着磨损、塑性形变同时伴有轻微的磨料磨损,而渗氮后材料磨损机制则为磨料磨损。  相似文献   

8.
采用激光相变硬化、离子渗氮及激光相变增强离子渗氮3种工艺对TA2钛材进行表面强化处理,并利用X射线衍射仪、扫描电子显微镜、维氏硬度计和摩擦磨损试验机对材料表面硬化层的物相组织、表面形貌、硬度和摩擦学性能进行分析测试。结果表明,激光相变后,试样进行600℃×8 h的离子渗氮可抑制长时间高温渗氮引起的TA2基体组织粗化,获得组织合理、耐磨性能优良的渗氮层。  相似文献   

9.
在TA2工业纯钛表面通过搅拌摩擦加工,利用搅拌旋转产生的纯钛表面塑形变形过程使SiC粒子进入材料表面基体组织,实现改善工业纯钛表面硬度及其耐磨性的目的。文章研究了搅拌摩擦加工后TA2工业纯钛显微组织特征,对比分析了TA2工业纯钛加入SiC粒子的搅拌摩擦加工区与未加入SiC粒子的搅拌摩擦加工区摩擦磨损及电化学腐蚀性能。结果表明:TA2工业纯钛表面经加入SiC粒子的搅拌摩擦加工后,SiC粒子被成功加入材料表层基体组织,搅拌加工区晶粒发生了剧烈的塑性变形、破碎,实现加工区组织结构的致密化和细化;经加入SiC粒子的搅拌摩擦加工后TA2工业纯钛抗摩擦磨损性能明显提高,但电化学腐蚀性能有小幅下降。  相似文献   

10.
研究了负压条件下,不同氮氩混合比对TA2工业纯钛组织与性能的影响。结果表明:渗氮层主要由α-Ti、TiN0.3和TiN相组成。有效硬化层深度为 30~50 μm,氮氩比在1:5和1:1时渗层硬度较高且梯度平缓。腐蚀电位随氮分压的增大先提升后降低,腐蚀速率则先降低后增大。当氮氩比为1:1时,TA2渗氮层具有最优的综合性能。  相似文献   

11.
热氧化对TA2耐磨和耐蚀性能的影响   总被引:1,自引:0,他引:1  
选取TA2工业纯钛为研究对象进行热氧化处理,研究热氧化处理后试样表层物相构成、显微硬度、耐磨性和在浓盐酸中的耐腐蚀性。结果表明,热氧化后TA2表面形成了金红石型TiO2氧化膜,TiO2氧化层厚度随热氧化温度升高而增加;表层显微硬度随热氧化温度升高而提高。热氧化使TA2耐磨性和在36%~38%浓盐酸中耐腐蚀性明显改善,其中700℃为改善TA2耐磨性和耐蚀性的最佳热氧化工艺。  相似文献   

12.
刘元福  陈吉  孙彦伟  黄澳  宋见  常季 《表面技术》2016,45(11):93-98
目的对SS304在300 Pa不同温度下进行表面离子渗氮,研究渗氮层和SS304的耐蚀性。方法通过动电位极化曲线和交流阻抗谱分析SS304和渗氮层在3.5%Na Cl溶液中的耐蚀性,采取金相显微镜、SEM、XRD对渗氮层和SS304的表面形貌和相组成进行分析测试,采用显微硬度计和镜像显微镜对渗氮层和SS304的硬度和截面形貌进行分析测试。结果 SS304中有γ相和M相,400℃时渗氮层试样出现γN、Fe_(2~3)N、Fe_4N,大于450℃时,渗氮层试样出现了Fe2~3N、Fe4N、Cr N。渗氮层在3.5%NaCl溶液中,400℃时渗氮层的自腐蚀电流密度比SS304的小,大于450℃时,渗氮层的自腐蚀电流密度比SS304的小且随渗氮温度增加而逐渐增大;400℃时渗氮层的自腐蚀电位比SS304的大,大于450℃时,渗氮层的自腐蚀电位比SS304的大且随渗氮温度增加而逐渐降低;400℃时渗氮层表面的膜电阻比SS304的大,大于≥450℃时,渗氮层表面的膜电阻比SS304的小。结论渗氮层的耐蚀性随温度的升高而降低,400℃时渗氮层的耐蚀性比SS304的好,大于450℃时,渗氮层的耐蚀性比SS304的低;400℃时渗氮层生成氮扩大奥氏体(γN),可大大增加耐蚀性,大于450℃时,渗氮层生成Cr N,耐蚀性减小。  相似文献   

13.
应用液相等离子体电解渗氮技术,在氨水电解液体系下,探究渗氮时间对38CrMoAl钢液相等离子体渗氮组织与性能影响。采用OM、SEM、XRD对渗氮层的微观组织结构、相组成进行了观察和分析,采用Parstat2273电化学工作站测试了渗层的耐蚀性能,并对渗层显微硬度和耐磨性进行了测试。结果表明:随着渗氮时间的延长,渗氮层中白亮层呈先增加后降低的趋势,扩散层不断增加;试样表面"火山凸起"微区落差和层絮状结构逐渐增大,孔洞分布均匀度降低且孔径逐渐增大,表面粗糙度明显提高;渗氮层最大硬度值逐渐增大,耐磨性能较之未处理试样有显著提升,最大磨损失重量随着处理时间延长而降低;经2、5、10min液相等离子体电解渗氮处理的试样表现出的耐蚀性要高于未经处理试样,其中t=10 min时,耐蚀性最好;经15 min液相等离子体电解渗氮处理的试样表现出的耐蚀性要低于未经处理试样。  相似文献   

14.
目的 在保障304奥氏体不锈钢良好耐蚀性前提下,研发显著改善表层硬度及耐磨性的低温高效离子渗氮技术。方法 低温离子渗氮时,在试样周围均匀放置微量海绵钛,研发304奥氏体不锈钢创新钛催渗低温离子渗氮技术。采用光学显微镜、扫描电子显微镜、能谱分析仪、X射线粉末衍射仪、显微维氏硬度计、摩擦磨损测试仪,以及电化学工作站等设备分别对试样截面显微组织、物相及成分、截面显微硬度、渗层耐磨性能、耐蚀性能等渗层组织性能进行测试与分析。结果 304奥氏体不锈钢在420 ℃/4 h钛催渗离子渗氮处理后,不仅保持了良好耐蚀性,且渗层耐蚀性比常规低温离子渗氮略有提升,同时,表面硬度与耐磨性大幅提高,表面硬度由常规离子渗氮的978HV0.025提升至1350HV0.025。磨损率由20.9 μg/(N.m)降低至7.4 μg/(N.m),下降了约2/3。特别有价值的是,钛催渗低温离子渗氮效率比传统离子渗氮显著提升,渗氮层厚度由常规离子渗氮的11.37 μm增厚到48.32 μm,即渗氮效率提高到常规离子渗氮的4倍以上。结论 本研究研发的钛催渗低温离子渗氮技术在保障304奥氏体不锈钢优良耐蚀性的同时,能够大幅度提升不锈钢表面硬度及耐磨性能,且具有显著的催渗效果。  相似文献   

15.
低压等离子体弧源离子渗氮   总被引:2,自引:0,他引:2  
利用低压等离子体弧源离子渗氮技术,在约400 ℃、4 ×10 - 1 Pa 真空度条件下对奥氏体不锈钢、纯铁进行了低温渗氮表面强化处理。奥氏体不锈钢表面形成的渗氮层由氮在奥氏体中的过饱和单相固溶体组成,具有很高的硬度和良好的耐蚀性。纯铁渗氮层则由化合物层和扩散层组成。这种渗氮方法完全避免了工件表面产生弧光放电  相似文献   

16.
采用真空感应渗氮方法在20Cr Mn Ti钢表面制备渗氮层,利用X射线衍射仪、扫描电镜、显微硬度计和摩擦磨损试验机等分析了渗氮层的物相、组织结构、致密性、显微硬度梯度和耐磨性。结果表明:真空脉冲感应渗氮1 h就能够制备出较为致密的渗氮层,其硬度超过800 HV0.025,扩散层深度达到300μm;渗氮层主要由合金氮化物(Mn_4N,Cr_2N)和铁氮化合物(Fe_(4.4)N,Fe_3N,Fe_2N)组成,随着渗氮压力的增加,渗氮层由含氮量低的铁氮化合物逐渐转变为高氮的铁氮化合物;感应渗氮的气体压力对渗氮层的厚度影响不大,随着渗氮气体压力的增加,渗氮层的厚度有小幅度的增加,但是当渗氮气体压力过大时,渗氮层的脆性增大;当渗氮气体压力为-30 k Pa时,渗氮层的磨损率最低,大大提高了基体的耐磨性。  相似文献   

17.
对TA1纯钛进行了离子碳氮共渗。用扫描电镜对离子碳氮共渗的TA1纯钛改性层进行了观察。用X射线衍射仪测定了改性层的物相。用能谱仪对改性层作成分分析。用显微硬度计测定改性层的硬度。用SRV摩擦磨损试验机测定摩擦系数,在往复式磨损试验机上进行,磨损试验。结果表明,经离子碳氮共渗的TA1纯钛表面获得了金黄色、均匀的Ti2N/TiN改性层,显微硬度为840HV0.01。碳氮共渗表面改性层能明显提高纯钛TA1的耐磨性。  相似文献   

18.
王琦  卢军  杨威  王静 《热处理》2013,(5):36-39
对304、316 L奥氏体不锈钢进行了不同温度、不同时间的离子渗氮。研究了渗层的显微组织和耐腐蚀性,测定了渗层的硬度。结果显示,随着渗氮温度的升高,两种钢渗层的表面硬度和深度都增加,而耐蚀性降低。渗氮温度≥400℃时,随着渗氮时间的延长,两种钢渗层的表面硬度变化不大,但深度明显增加,渗层的耐蚀性降低。当渗氮工艺相同时,316 L钢渗氮层的硬度、深度和耐蚀性均比304钢的渗氮层高。  相似文献   

19.
谢紫杰  朱景环 《热处理》1998,51(3):21-23
工业纯钛经离子渗氮后,表面可生成金黄色的、组织致密的、耐腐蚀和耐磨性能优异的氮化钛渗层。本文介绍了渗氮工艺,渗层性能分析,以及试制的电池粉芯模等的使用效果。  相似文献   

20.
利用自主研制的真空感应渗氮装置在38CrMoAl钢表面制备渗氮层,探讨渗氮压力对渗氮层组织与性能的影响,并采用SEM、自动显微硬度测试、滑动干摩擦及电化学极化试验等分析了渗氮硬化层的显微组织、硬度、耐磨性与耐蚀性。结果表明:经渗氮处理后的试样表层平整,白亮层、扩散层、基体之间过渡平缓。随着渗氮压力的上升,渗层厚度增加,渗层硬度、耐磨性先提高后下降,-30 kPa时表面硬度达到1200 HV0.025,耐磨性提高约5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号