首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过力学性能测试和金相显微分析,研究了热处理工艺对X4CrNiCuMo14-5叶片钢力学性能的影响.结果表明,在990~1050℃固溶,固溶温度对力学性能影响较小;在850~950℃中间调整,温度的升高,力学性能变化较小;增加低温二次冷处理,塑性提高,强度上升,冲击韧度下降;X4CrNiCuMo14-5叶片钢建议热处理:1010℃×1h空冷+900℃×2h空冷+冰水冷却+600℃×2h空冷.  相似文献   

2.
TC16钛合金在780、800、850、900℃下固溶热处理30 min,分别以水淬、空冷、炉冷方式进行冷却,再分别在520、560和600℃保温2、4、8、16 h空冷进行时效处理,利用OM和室温拉伸性能测试等方法,研究了不同热处理工艺对TC16钛合金棒材组织和性能的影响。结果表明,固溶温度对TC16钛合金塑性影响不大,相同的固溶时效处理制度下,随时效时间增加和温度的提高,合金强度和塑性都增加。TC16钛合金较合理的固溶时效处理工艺为:(780±20)℃固溶处理,保温2 h,炉冷至550℃以下后空冷,后在560℃下时效8 h,空冷,如此能获得要求的室温拉伸性能及良好的综合性能。  相似文献   

3.
利用光学金相显微镜、X射线衍射仪、扫描电镜及显微硬度计等现代检测技术研究了不同热处理工艺对17-4PH沉淀硬化马氏体不锈钢显微组织及力学性能的影响.结果表明:在固溶处理后进行480℃时效处理时,材料强度和硬度得到提高,但是塑性有所下降.而当时效温度升高到620℃,材料的强度和硬度降低而塑性增强.在480℃时效处理前进行780℃调整处理后,可以使合金得到良好的综合力学性能.因此在本试验条件下,17-4PH钢最佳热处理工艺为在1050℃固溶处理后,先进行780℃调整处理,再进行480℃时效处理.  相似文献   

4.
对成分为0. 049%C、15.38%Cr、4.86%Ni、3.49%Cu、0.175%Si、0.760%Mn和0.173%Nb(质量分数),尺寸为40 mm×40 mm×400 mm的A705-630不锈钢试样进行了不同工艺的热处理:①1 040℃×1.5 h油冷固溶处理,固溶处理后480℃×3 h空冷时效处理;②固溶处理后时效处理前740~850℃保温2 h水冷调整处理。热处理后,检测了钢的显微组织和力学性能。结果表明:与仅经固溶和时效处理的A705-630钢相比,经固溶、时效和调整处理的钢马氏体板条较细小,位向关系较明显,强度和硬度下降,冲击韧度提高,且随着调整处理温度的提高,钢的强度、硬度提高,冲击韧度降低。  相似文献   

5.
对进口的和国产的直径为55 mm的PH13-8Mo钢棒材进行了固溶和时效处理,固溶处理工艺为930℃保温1 h油冷,时效温度分别为480℃、510℃、540℃、565℃、590℃和620℃。在热处理后,检测了两种钢的显微组织和力学性能。结果表明:经510℃时效处理的两种钢均具有良好的强度和塑性;经540℃时效处理的进口PH13-8Mo钢的强度和塑性略有降低,但冲击韧度较高;高于590℃时效的两种PH13-8Mo钢均发现有逆转变奥氏体,且进口的PH13-8Mo钢的逆转变奥氏体更多。此外,采用Thermo-Calc软件进行热力学计算可有效优化钢的成分,提高钢的力学性能。  相似文献   

6.
热处理工艺对TB2钛合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了不同热处理工艺对TB2钛合金板材显微组织和力学性能的影响。结果表明,该合金在730℃以上固溶处理已经开始再结晶,在730~820℃之间处理的样品强度和延伸率变化不大;在760℃固溶处理3min,再结晶已经开始,保温时间〉120min时晶粒变得相当粗大;合适的固溶处理制度为760℃,10min;在固溶处理制度相同,时效时间为2h,时效温度变化对强度和塑性影响大不;时效时间延长至8h,随时效温度升高,Rm,RPo2呈下降趋势;760℃,10min固溶处理加500℃,8h时效处理后,Rm,值最高可达到1360MPa。  相似文献   

7.
通过透射电镜、扫描电镜、X射线衍射、光学显微镜等显微组织分析及力学性能测试,研究了不同固溶温度、时效温度及其冷却方式对0Cr17Ni4Cu4Nb不锈钢组织和力学性能的影响,演绎了该不锈钢大型锻件的热处理工艺。结果表明,以1040℃固溶处理,0Cr17Ni4Cu4Nb钢可获得较好的综合力学性能,固溶后采用油冷,钢的强度最高,塑性较好;时效冷却速度对合金力学性能的影响较小,采用480℃时效空冷既能满足强度要求,也能保持理想韧性。该钢的最佳热处理工艺为1040℃固溶(油冷)+480℃时效(空冷)。  相似文献   

8.
对Al-Cu合金进行析出强化和人工时效处理以获得优异的力学性能,如高的强度、好的韧性。其热处理工艺条件为:510~530℃固溶处理2h;60℃水淬;160~190℃人工时效2~8h。采用光学显微镜、扫描电镜、能谱分析、透射电镜和拉伸实验对经固溶和人工时效处理的Al-Cu合金的组织和力学性能进行表征。固溶处理实验结果表明,Al-Cu合金的力学性能随着固溶处理温度的升高先增加,然后降低。这是由于Al-Cu合金的残余相逐渐溶解进入基体中,从而导致析出相的数量和再结晶晶粒尺寸不断增加。相较于固溶处理温度,固溶处理时间对Al-Cu合金的影响较小。人工时效处理实验结果表明,合金经180℃时效8h,可以获得最大的拉伸强度。合金的最大拉伸强度和屈服强度随着时效时间的延长和温度的升高而升高。  相似文献   

9.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

10.
采用X射线衍射、金相显微镜和扫描电镜等手段研究了X4CrNiCuMo14-5叶片钢经固溶处理、中间调整处理然后于不同温度时效处理后的显微组织和力学性能。结果表明,450℃时效硬化效果最显著;660℃时效,发生奥氏体重结晶,残留奥氏体量减少,钢的强度增加。  相似文献   

11.
通过调整热处理工艺与加入强化元素Nb研究提高A286合金的屈服强度。结果表明,不含Nb的A286合金经过900℃固溶保温1 h水冷、720℃时效保温16 h空冷的屈服强度达到750 MPa;加入0.08%Nb的A286合金经过900~980℃固溶保温1 h水冷、720℃时效保温16 h空冷,合金屈服强度达到740~770 MPa。如果考虑成本,高屈服强度A286合金最佳热处理工艺为900℃固溶保温1 h水冷、720℃时效保温16 h空冷。  相似文献   

12.
热处理对ZK60镁合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
研究固溶和时效热处理工艺对铸态ZK60镁合金显微组织与力学性能的影响.结果表明,当固溶处理条件为400 ℃下保温10 h、时效处理温度为150.c时,ZK60合金中析出相随时效时间的延长而增加,直至30 h.当时效温度升至200℃时,析出相体积分数在时效时间为15~20 h时达到最大值.室温拉伸实验表明,高密度第二相析出物有利于提高合金的强度和靼性.优化的热处理工艺条件为400℃固溶10 h随后于150℃时效30 h,得到的镁合金兼具有高的强度与塑性综合性能.  相似文献   

13.
研究了固溶处理冷却速率对ZG0Cr17Ni4Cu4Nb钢时效后力学性能的影响。固溶处理温度为1040℃和1050℃,冷却方式为空冷、水冷和油冷;时效温度分别为470℃、480℃、490℃、500℃和550℃。结果表明,固溶处理后的冷却速率对ZG0Cr17Ni4Cu4Nb钢力学性能的影响很大,最佳热处理工艺为1040℃保温50 min,油冷,然后490℃时效3 h空冷,再于470℃时效4 h空冷。  相似文献   

14.
研究了常规固溶+时效、双时效及固溶+预时效+时效处理对热加工态TB2钛合金显微组织及力学性能的影响。显微组织研究表明:通过增加低温预时效工艺,可以使经热处理后的TB2钛合金中析出的次生α相较经常规固溶+时效处理后的更加均匀、细小。力学性能分析表明:经常规固溶+时效处理后,TB2钛合金的塑性较好,但强度偏低;双时效处理可以提高TB2钛合金的强度,但塑性较差;固溶+预时效+时效处理后,TB2钛合金的强度与塑性匹配良好。进一步热处理工艺研究表明:经780℃×1 h/AC+350℃×6 h/AC+560℃×8 h/AC热处理后,TB2钛合金的强度与塑性达到最优匹配,抗拉强度为1 190 MPa,延伸率为14%。  相似文献   

15.
热处理对TC4钛合金厚板组织和性能的影响   总被引:1,自引:0,他引:1  
采用正交试验方法,研究了不同热处理制度对TC4钛合金厚板显微组织和力学性能的影响。结果表明,固溶温度对合金显微组织、室温拉伸强度、塑性和断裂韧性影响很大。相变点下固溶时合金组织为双态组织,相变点上固溶时合金组织为魏氏组织;当固溶温度从975℃相变点下增加到1045℃相变点上时合金的强度变化不大,合金的塑性大幅下降,而合金的断裂韧性逐渐升高;TC4钛合金厚板在975℃/10 min+670℃/1 h热处理,可获得最佳强度-塑性匹配,在995℃固溶处理,670~760℃时效处理可获得最佳强度-韧性匹配。  相似文献   

16.
研究了固溶时效处理对TA10钛合金棒材组织和性能的影响。结果表明:在890℃相变点以下加热时,随着固溶温度的升高,初生α相含量不断减少,β转变组织逐渐增多,合金强度增加,塑性先升高后降低;当固溶温度超过相变点时,组织形态转变为魏氏组织,合金强度进一步增加,塑性显著降低;本试验得到的较佳固溶时效处理制度为800℃保温30 min,水冷+500℃保温2 h,空冷,可获得良好的组织与性能。  相似文献   

17.
研究了不同时效温度对时效处理后的Ti-5523合金的微观组织和力学性能的影响。结果表明:在合金相变点(790±5)℃以下的760℃或相变点以上的840℃固溶处理1 h,460~580℃时效处理8 h,Ti-5523合金的微观组织和力学性能对时效温度敏感。合金强度随着时效温度升高而降低,塑性则逐渐提高。合金在760℃×1 h/AC固溶+580℃×8 h/AC时效处理后的断后伸长率和断面收缩率分别为17. 50%和67%,具有良好的塑性。固溶及时效处理后的Ti-5523合金强度主要受α相含量和尺寸的影响,α相尺寸减小或α相含量增加均可以提高合金的强度。随着时效温度的升高,在双相区固溶的时效态合金的初α相逐渐从长条状向短球状、椭球状转变,且含有短球状、椭球状的初生α相的合金具有更好的塑性变形能力。由于初生α相和次生α相的尺寸、含量随着时效温度的增加而发生的改变对合金力学性能产生的影响是协同的,因此双相区固溶的时效态合金的力学性能对时效温度非常敏感。  相似文献   

18.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

19.
本文阐述了固溶处理机制,且制定了0Cr16Ni16钢形变热处理后的固溶处理工艺,通过试验研究了固溶处理工艺对0Cr16Ni16钢形变热处理后力学性能的影响。研究表明试样形变后进行固溶处理强度有所提高而塑性变差;且在750~900℃范围内,强度随着固溶温度的升高而降低,塑性随着固溶温度的升高而增大。  相似文献   

20.
对含3.47%Si、0.54%Mg、0.33%Cu和0.39%Cr(质量分数)的低硅Al-Si-Mg铸造铝合金进行了固溶处理和时效。固溶处理工艺:分别在510、520、530、540℃保温2、4、6和8 h水冷;时效温度为170、180、190℃,保温时间2、4、6和8 h。检测了合金的显微组织和力学性能。结果表明:该铸造铝合金的最佳热处理工艺为540℃×4 h水冷固溶处理,随后180℃×6 h时效处理,经此工艺热处理的低硅Al-Si-Mg铸造铝合金的抗拉强度为365.9 MPa,屈服强度为313.9 MPa,断后伸长率为9.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号