首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用板材标准M(T)试样研究了4种不同氢含量(0,200,450,730 (g/g) NZ2锆合金的疲劳裂纹扩展行为.发现不论含氢量的高低,裂纹稳态扩展区的裂纹扩展行为均符合Paris幂律关系,即 da/dN=C((K)n,但随着氢含量的增加,n值不断减小;含氢量增加导致NZ2合金塑性变形能力降低,疲劳裂纹扩展速率增加,尤其是氢含量较高时表现更为明显.  相似文献   

2.
通过拉曼光谱法研究NZ8合金在360℃锂水和400℃蒸汽的静态高压釜中腐蚀后氧化膜的晶体结构。结果表明,NZ8合金的氧化膜主要由单斜氧化锆组成,其中包括少量畸变的四方氧化锆。随着腐蚀时间的延长,氧化膜中平均四方氧化锆含量不断减少,单斜氧化锆含量不断增加,四方氧化锆在向单斜氧化锆转变。从氧化膜/基体界面到氧化膜外表面,四方氧化锆含量不断减少,界面处四方氧化锆含量最高。NZ8合金在360℃锂水中腐蚀98d后所得氧化膜/金属界面处四方氧化锆含量较其在400℃蒸汽中腐蚀70d所得氧化膜/金属界面处四方氧化锆含量高,而且在400℃蒸汽中腐蚀后氧化膜外表面没有四方氧化锆形成。四方氧化锆向单斜氧化锆的转变决定了NZ8合金的耐腐蚀性能。氧化膜中四方氧化锆含量越高,则锆合金的耐腐蚀性能越好。  相似文献   

3.
A newly developed Ti–46Al–6Nb-0.5W-0.5Cr-0.3Si-0.1C alloy was oxidized isothermally and cyclically in air, and its high-temperature oxidation behavior was investigated. When the alloy was isothermally oxidized at 700 °C for 2000 h, the weight gain was only 0.15 mg/cm2. The parabolic rate constant, kp (mg2/cm4·h), measured from isothermal oxidation tests was 0.002 at 900 °C and 0.009 at 1000 °C. Such excellent isothermal oxidation resistance resulted from the formation of the dense, continuous Al2O3 layer between the outer TiO2 layer and the inner (TiO2-rich, Al2O3-deficient) layer. The alloy also displayed good cyclic oxidation resistance at 900 °C. Some noticeable scale spallation began to occur after 68 h at 1000 °C during the cyclic oxidation test.  相似文献   

4.
Oxidation behaviour of nitride-strengthened Ni-base alloys Nitride-strengthened Ni-base alloys of the type NiCr7030, produced by DESU-technology, provide promising mechanical properties up to temperatures of 1200°C. This paper provides data on the cyclic and isothermal oxidation behaviour of these alloys in the temperature range of 1000–1200°C. The results show, that depending on the actual composition of the alloys tested even at 1200°C corrosion rates below 0.3 g/m2 h can be achieved. It was found that the silicon content must be limited to a maximum of 1.00 wt.-% to guarantee the excellent oxidation resistance even at temperatures higher than 1100°C.  相似文献   

5.
研究了热处理前后Ti1.4V0.6Ni合金的结构和电化学性能。采用X射线粉末衍射(XRD)方法分析合金的结构。电化学特性包括放电容量、循环稳定性和高倍率放电性能等。XRD衍射分析表明,在590°C热处理30min的合金,主要包含正二十面体准晶相、Ti2Ni(FCC)相、V基固溶相(BCC)和C14Laves相(Hex)。电化学测试显示,热处理后在30°C和放电电流密度为30mA/g的条件下,合金电极的最大放电容量可达330.9mA·h/g,并且循环稳定性和高倍率放电性能也得到改善。此外,通过电化学阻抗和合金内部氢的扩散系数研究了合金电极的动力学性能。  相似文献   

6.
A 2 mm thick Mg-2Nd-0.3Zn-0.4Zr (NZ20K) and AZ31 plates were friction stir welded. The microstructures of joint were compared and the tensile properties at room temperature and 200 °C were measured. The fracture features and the microhardness of joints were investigated. The effect of the strengthening phases in NZ20K joint was discussed compared with AZ31 joint. The results indicate that NZ20K shows better property especially at high-temperature environment. The grain of NZ20K in the nugget zone (NZ) is refined obviously with uniform distribution of strengthening phase particles and it shows clear boundary between NZ and thermo-mechanically affected zone (TMAZ). The grains of TMAZ are elongated because of the stir action of tool pin. The heat-affected zone is narrow with coarse grains. Mg12Nd is the main strengthening phase in NZ20K joint through XRD analysis. The ultimate tensile strength of NZ20K joint decreases a little from room temperature to 200 °C for its main strengthening phase particle-Mg12Nd being stable when the temperature goes up. On the contrast, the ultimate tensile strength of AZ31 joint decreases a lot at 200 °C for its strengthening phase soften or dissolve at high temperature. The hardness of NZ20K joint is higher than AZ31 joint and the lowest hardness of both joints is achieved on the advancing side where the fracture occurred.  相似文献   

7.
采用NZ2锆合金为研究对象,在相同加工率的条件下,选取不同的热轧温度800,700,650,610 ℃,制得厚度为1.4 mm的板材样品。通过金相,扫描电镜及透射电镜观察合金中第二相的分布、种类,并进一步使用软件统计了第二相的大小及分布规律。结果表明,大多数第二相位于晶粒内部,少数位于晶界处。第二相粒子主要为球形及棒状。选择较低的热轧温度(650 ℃)可以得到均匀、细小,弥散分布的第二相  相似文献   

8.
The as-cast Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 alloy has been treated using rapid-quenching technique at different quenching speeds to improve the electrochemical hydrogen storage properties of the alloys. The morphologic and microstructural characterizations of alloys were studied using x-ray diffraction and transmission electron microscopy. It is observed that the quenched alloy is composed of two main phases, LaNi5 and LaNi3, and one minor phase of La2Ni3. The microstructures of the alloys vary with the quenching speeds, as well as contain microcrystalline, nanocrystalline, and amorphous structures. The electrochemical hydrogen storage properties were measured using a battery test system. The results indicate that the discharge capacity of the alloy increases initially and then decreases with the rising quenching speeds. The quenched alloy at a speed of 15 m/s exhibits the maximum discharge capacity (388 mAh/g), which is much higher than that of the AB5-type rare earth-based hydrogen storage alloy reported in previous studies. However, the stability of the electrochemical cycle of the quenched alloy exhibits inverse trends compared with the discharge capacity. The best electrochemical cyclic stability of the quenched alloy can be obtained at a speed of 25 m/s.  相似文献   

9.
Abstract

The hot roll bonding was carried out in vacuum condition between titanium alloy and stainless steel using copper interlayer. The stainless steel/Cu can not be bonded if the bonding temperature is lower than or equal to 730°C, and the Cu–Ti alloy can not be bonded if the bonding temperature is higher than or equal to 880°C. The testing results show that the total thickness of intermetallic layers at the interface between copper and titanium alloy increases with the bonding temperature, and the tensile strength of bonded joints decreases with increasing bonding temperature. The maximum strength of 343 MPa was obtained at the bonding temperature of 780°C, the reduction of 20% and the rolling speed of 38 mm s–1.  相似文献   

10.
The isothermal and cyclic oxidation behavior of Ti-47Al-2Mn-2Nb with 0.8 vol.% TiB2 particle-reinforced alloy was investigated in air between 700 and 1000 °C. In the study, the kinetics of isothermal and cyclic oxidation were performed by using a continuous thermogravimetric method which permits mass change measurement under oxidation conditions. The oxide scales and substrates were characterized by scanning electron microscopy with energy-dispersive x-ray analysis and x-ray diffraction. At 700 and 800 °C, the alloy showed an excellent oxidation resistance under isothermal and cyclic conditions. After exposure to air above 800 °C, the outer scale of the alloy was dominated by a fast-growing TiO2 layer. Under the coarse-grained TiO2 layer was the Al2O3-rich scale, which was fine-grained. At 900 and 1000 °C, the extent of oxidation increased clearly. The oxidation rate follows a parabolic law at 700 and 800 °C. However, the alloy, upon isothermal oxidation at 900 °C, can be divided into several stages. During the cyclic oxidation at 900 and 1000 °C, partial scale spallation takes place, leading to a stepwise mass change.  相似文献   

11.
A mixture of hydrogen peroxide, sulphuric and hydrofluoric acids has been used as pickling solution at pH 2.0 for AISI 316L austenitic stainless steel (SS). The stability of the H2SO4‐HF‐H2O2 mixture is assessed varying the ferric ions content from 0 to 40 g/L, the temperature from 25 to 60°C, and with and without stirring of the pickling solution. The AISI 316L SS pickling rate at 50°C was 2.6 and 0.2 mg/dm2 day (mdd) in the absence and presence of 40 g/L ferric ions, respectively. p‐toluene sulphonic acid (PTSA) has been used as stabiliser of hydrogen peroxide.  相似文献   

12.
The effects of superalloy composition and Pt content on the high-temperature oxidation behavior of γ–γ’ NiPtAl diffusion coatings were investigated over the temperature range of 1050–1150 °C. Simple NiPtAl diffusion coatings with 7 or 12 µm electroplated Pt thickness were evaluated in 1-h cycles in dry O2 for up to 2500 cycles on four superalloys: directionally solidified (DS) alloy 142, 1st generation single-crystal (SX) alloy 1483, and 2nd generation SX alloys X4 and N5. Coatings on high-Hf alloy 142 experienced severe internal oxidation of Hf at all temperatures. Coatings on ~5 at.% Ti alloy 1483 were protective at 1050 °C, but exhibited severe scale spallation at 1100 °C, with extensive formation of Ti- and Ni-rich oxides at the gas interface. Coatings with 7-µm Pt on X4 were extremely protective at 1100 °C, but failed rapidly at 1150 °C, which also was associated with the formation of Ti-rich oxides. Increasing the coating Pt content on X4 improved the 1150 °C oxidation behavior. Coatings on Ti-free N5 showed the best performance at 1150 °C, especially with 12-µm Pt. Although γ–γ’ coatings can exhibit outstanding cyclic oxidation resistance with minimal Al depletion, they appear to be sensitive to substrate composition, as well as eventual Pt depletion due to interdiffusion.  相似文献   

13.
Isothermal oxidation resistance of Fe40 (at.%) Al-based atomized and deposited intermetallic alloys has been evaluated. The alloys included Fe40Al, Fe40Al + 0.1B, and Fe40Al + 0.1B + 10Al2O3 at 800, 900, 1000, and 1100 °C. The tests lasted approximately 100 h, although in most cases there was scale spalling. At 800 and 900 °C, the Fe40Al + 0.1B alloy had the lowest weight gain, whereas the Fe40Al alloy had the highest weight gain at 800 °C (0.10 mg/cm2) and the Fe40Al + 0.1B + 10Al2O3 alloy was the least oxidation resistant at 900 °C with 0.20 mg/cm2. At 1000 °C, the Fe40Al + 0.1B alloy showed the highest weight gain with 0.12 mg/cm2 and the Fe40Al alloy the lowest. At 1100 °C, again, as at 900 °C, the Fe40Al alloy was the least resistant, whereas the Fe40Al + 0.1B alloy performed the best, but the three alloys exhibited a paralinear bahavior on the weight-gain curves, indicating the spalling, breaking down, and rehealing of the oxides. This spalling was related to voids formed at the metal-oxide interface.  相似文献   

14.
研究了NZ2锆合金板材在不同温度、不同浓度的碘蒸气中的力学行为,并进一步通过扫描电镜观察其断口形貌。结果表明,试验温度为400 ℃,其发生应力腐蚀的临界碘蒸气压约为102 Pa;横向试样较轧向试样更具应力腐蚀敏感性;温度升高能够促进裂纹尖端的应力释放,有利于碘能被更有效地吸附到裂纹尖端,加快对锆合金的腐蚀作用,从而降低了应力腐蚀的临界碘浓度。在高温碘蒸气中,断口腐蚀产物主要为锆的氧化物;虽然碘蒸气对锆有较强的腐蚀作用,但是不足以穿透其表面的保护膜,而局部变形则可以促进碘对金属锆的腐蚀。  相似文献   

15.
Investigations on hydrogen embrittlement of high strength low alloy steels in high pressure hydrogen under static and dynamic loading CERT experiments with high strength low alloy steels with ultimate tensile strengths in the range 700-1200 N/mm2 were performed with electropolished and ground surfaces with elongation rates of 1 to 277 · 10?7s?1 in nitrogen and hydrogen (100 bar) at 20°C under conditions of unidirectional straining as well as cyclic loading with saw tooth characteristics. Under unidirectional straining the highest hydrogen effect was observed at ε = 2,2 · 10?5s?1. While no influence was detectable of the alloy elements Mn, Cr, Ni and Mo, the concentration of nonmetallic inclusions proved to be very important. Cyclic loading with load steering gave no sufficient discrimination of H effects. However, cyclic loading with a maximum load defined by σmax = σ(F=0), yielded good results. The effect of the loading amplitude is poor. A significant decrease of the time to failure in hydrogen is observed only at ultimate tensile strengths above 1000 N/mm2. Comparable results were obtained from cyclic loading experiments steered by elongation.  相似文献   

16.
Difficulties of alloy selection for high-temperature halogen service are described with reference to product morphologies, vaporization and the manner by which alloy degradation may occur. Selected results from work with alloy 600 (Ni-16 Cr-8Fe) and Havnes® Alloy 230 (Ni-22 Cr-14W-2Mo-0.3Al-0.02 La) are used to contrast various modes of attack. Oxidizing chlorine-containing gases often give rise to heavy volatilization and intergranular attack at 900°C (1650°F) whilst HF/steam mixtures result in more uniform internal oxidation at 750°C (1380°F).  相似文献   

17.
采用热重法并结合SEM、EDAX等分析手段,研究了预氧化温度对GH3128合金抗高温(1100℃)循环氧化性能的影响。结果表明:在适当温度下进行预氧化处理可有效提高合金的抗高温循环氧化性能。GH3128合金经预氧化处理后抗高温循环氧化性能的优劣主要取决于两种因素的综合作用,其一是合金表面元素Cr的选择性氧化,形成致密均匀的保护性预氧化膜,提高合金抗高温循环氧化性能;其二是合金中元素Ti、Cr的晶界偏析加剧,加速晶界氧化并导致显微裂纹等缺陷产生,降低合金的抗高温循环氧化性能。900℃预氧化处理的GH3128合金试样具有最佳的抗高温循环氧化性能,该温度下预氧化膜形成较好且合金元素Ti、Cr的晶界偏析作用相对较弱。  相似文献   

18.
单相V基合金膜具有比Pd合金膜更高的氢渗透率及较低的成本,在氢分离合金膜纯化领域有潜在的应用前景。通过增加Cr含量来探究斥氢元素Cr对单相V90-xTi10Crx(x=0, 5, 10, 20)(原子分数,%)合金氢溶解、氢渗透以及抗氢脆能力的影响。结果表明,Cr含量的增加降低了氢在V90-xTi10Crx合金中的氢溶解度以及氢扩散系数,从而降低了氢渗透率,但V90-xTi10Crx合金仍表现出优于Pd及Pd-Ag合金的氢渗透性能。另一方面,随着Cr含量的增加,V90-xTi10Crx合金破裂温度从184℃(x=5)降低到141℃(x=10),而x=20时,合金膜冷至室温仍保持完整性,表现出优异的抗氢脆性能。  相似文献   

19.
为了提高Nb-Hf合金的高温热震性能,采用浆料烧结和高温渗透法制备了Si-Ti-Cr硅化物涂层,对比分析了Si-Ti-Cr硅化物包覆的Nb-Hf合金样品在大气和真空条件下的高温热震性能。通过模拟在热冲击过程中涂层的温度场和热应力场分布,揭示了Si-Ti-Cr涂层在大气和真空条件下的热冲击失效机理。结果表明,在1300 ℃热震循环100次条件下,涂层的真空失重小于0.8 mg/cm2;在1600 ℃热震循环200次条件下,涂层的空气增重小于3 mg/cm2。硅化物涂层在1300 ℃真空环境下和1600 ℃空气环境下具有优异的抗热震性能。  相似文献   

20.
This work is focused on the role of hydrogen in corrosion damage induced by the cyclic exposure of 2024 aluminium alloy to chloride media with air emersion periods at room and/or negative temperatures. Various analysis and microscopic observation techniques were applied at intergranular corrosion defects. A mechanism involving the contribution of hydrogen to the degradation of the alloy mechanical properties is presented. Several consecutive stress states appear during cycling, resulting from volume expansion of the electrolyte trapped in the intergranular defects during emersion phases at −20 °C. These stress states lead to hydrogen diffusion, transport and trapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号