首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Materialia》2001,49(7):1123-1128
A model is developed for describing rapid penetration of a liquid phase along a grain boundary. It is based on the assumption of a highly faceted solid/liquid interface. Experiments showing the faceting of the solid/liquid interface in grain boundary penetration experiments are presented. The basic hypothesis of the model are an undersaturated solid and a positive spreading coefficient of the liquid phase along the grain boundary. The model explains the apparent concave shape of the tip of the groove and the reason why penetration also occurs if the liquid phase is pre-saturated with the material of the solid. Moreover it predicts a power law with an exponent close to unity for the time dependence of the depth of penetration of the liquid layer along the grain boundary.  相似文献   

2.
The effects of impurities on the intergranular penetration of Bi based liquids in polycrystalline Ni at 700 °C were systematically investigated. In comparison with a nominally pure Ni (99.9945%), the presence of a total amount of <0.5 at.% impurities of Mn, Fe and Si in the Ni increased the penetration length by six times when a near-equilibrium Bi-Ni liquid was applied; when an initially pure Bi liquid was applied, this increment further enlarged to ∼20 times in the initial penetration stage. In a second set of controlled experiments, the addition of Mn, Sn and Fe to the liquid Bi-Ni all enhanced the intergranular penetration, but produced different kinetics and morphologies. We extended a concept that was initially proposed in the Rice-Wang model for grain boundary embrittlement to explain our observations of the impurity-enhanced intergranular penetration based on a theory that segregation of an impurity could reduce the grain boundary energy more rapidly than the solid-liquid interfacial energy. Correspondingly, a new analytical model for the effect of adding a third impurity on changing the equilibrium dihedral angle and the associated intergranular penetration kinetics has been derived for the dilute solution limit. Furthermore, we demonstrated that the interplay of bulk phase equilibria, interfacial segregation, transport (dissolution, precipitation and diffusion) processes and stress generation could effectively explain a variety of different intergranular penetration behaviors and morphologies that have been observed in the experiments conducted using 10 different combinations of the solid and liquid metals. The framework for understanding the impurity effects on intergranular liquid penetration developed in this study can be applied to other materials systems. This study has practically importance for understanding and controlling liquid metal corrosion and embrittlement.  相似文献   

3.
吴铭方  司乃潮  浦娟 《焊接学报》2009,30(11):85-88
在AI/Cu接触反应钎焊接头中易出现晶界渗透.为此,通过6063铝合金,镀铜层/1Cr18Ni9Ti不锈钢的接触反应钎焊获得晶界渗透形貌,并对晶界渗透机理进行了初步探讨.结果表明,Al/Cu之间的晶界渗透现象十分显著,在接触反应钎焊温度为570℃,保温时间为60 min时,晶界渗透深度达到了200μm左右;原子向晶界扩散是产生晶界渗透的必要条件,但不是充分条件,产生晶界渗透的关键因素在于晶界与基体原子互扩散通量不等,促使空位向晶界迁移,大量空位向晶界迁移的结果造成晶界出现极其微小的沟槽直至产生细微裂纹,在毛细管力作用下,共晶液相被吸入显微沟槽,从而形成晶界渗透;1Cr18Ni9Ti不锈钢一侧界面反应层由Fe-Al金属间化合物构成,与之相邻区域主要含Cu-Al金属间化合物,焊缝组织由Al-Cu共晶及大块状铝的固溶体组成.
Abstract:
Grain boundary penetration behavior occurs easily in the AI/Cu contact reactive brazing. In this paper, the mechanisms of formation and evolution of grain boundary penetration were investigated when contact reactive brazing between 6063 Al Alloy and 1Cr18Ni9Ti stainless steel was conducted using Cu as interlayer. The results show that the grain boundary penetration phenomenon is prominent. Grain boundary penetration depth was up to 200 μm when the brazing temperature was 570℃ and holding time was 60 min. The diffusion of atom into grain boundary was not sufficient but necessary for forming of grain boundary penetration. The key factor to induce grain boundary penetration was non-equilibrium diffusion of atom between the grain boundary and base metal, which led to crystal lattice expanding, and promoted the vacancy transferring into grain boundary, and resulted in a thin groove. And then, microcracks were formed in the grain boundaries, the eutectic liquid was sucked into the groove by capillary force, and finally grain boundary penetration was created. The interface reactive layer consisted of FeAl intermetallics (IMCs) in the side of ICr18Ni9Ti, the adjacent zone was Cu-Al IMCs, welded seam zone was composed of Al-Cu eutectic structure and large blocked Al sohd solution.  相似文献   

4.
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification. In the presence of the solid-liquid interface condition, the distributions of the electromagnetic force, flow field, temperature field, and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated. The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface, and the electromagnetic force is distributed in a gradient. There are intensive electromagnetic vibrations in front of the solid-liquid interface. The forced melt convection is mainly concentrated in front of the solid-liquid interface, accompanied by a larger flow velocity. The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival, for making dendrite easily fragmented, homogenizing the melt temperature, and increasing the undercooling in front of the solid-liquid interface.  相似文献   

5.
We demonstrate that the dependence of grain boundary energy on composition leads to generation of normal stresses during grain boundary interdiffusion process. These self-generated stresses facilitate grain boundary embrittlement and rapid penetration of liquid phase along the grain boundaries.  相似文献   

6.
The equilibrated grain boundary groove shapes of a solid Al solution in equilibrium with Al-Cu-Ag liquid were observed from a quenched sample using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy, and grain boundary energy of the solid Al solution were determined from the observed grain boundary groove shapes. The thermal conductivity of the solid phase for Al-16.42 at.% Ag-4.97 at.% Cu and Al-16.57 at.% Ag-11.87 at.% Cu alloys and the thermal conductivity ratio of the liquid phase to the solid phase for Al-16.57 at.% Ag-11.87 at.% Cu alloy at the melting temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively.  相似文献   

7.
不锈钢/Al固液轧制复合板材界面剪切强度与界面结构   总被引:12,自引:0,他引:12  
张彩碚  崔建忠 《金属学报》1999,35(2):113-116
测定了不锈钢/Al固液轧制复合板材界面剪切强度。应用扫描电镜、X射线衍射仪对不锈钢/Al固液轧制复合板材界面和剪切断面的形态、结构、成分等进行了观察和分析。界面层由明显不同的二层组成,即接近钢的明显过渡层和接近Al的沿晶界富Fe相的析出层。界面结合牢固,强度高。剪切断面大多发生在Al处,否则发生在界面层和钢/Al原始界面处。钢板经助焊剂浸镀后,界面结合强度高于未浸镀的。X射线衍射确定界面层中的金属  相似文献   

8.
《Acta Materialia》2005,53(1):151-162
The phenomenon of grain boundary penetration (GBP) of liquid Ga along grain boundaries (GB) of Al bicrystals is investigated by synchrotron radiation X-ray microradiography. From the three different types of bicrystals studied, only the one with the highest GB energy showed GBP in the absence of applied external stress. In situ observations of the penetration process reveal a linear propagation of the penetration front, accompanied by a continuous thickening of the wedge-shaped Ga layer in the GB. The experimental results demonstrate that GBP kinetics are strongly influenced by very weak levels of stress and tend to indicate that such stresses may be a prerequisite for the formation of nanometric penetration layers.  相似文献   

9.
铜基钎料高温钎焊不锈钢晶间贯穿机理的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文阐述了铜基钎料钎焊1Cr18Ni9Ti不锈钢时晶间贯穿的特点。区分了铜基钎科和含硼钎料在贯穿形态和贯穿机理上的本质差异,发现铜基钎料的晶间贯穿与其润湿铺展有联系,并通过紫铜和铜锰钴钎料在不锈钢表面的润湿铺展研究证明,铜基钎料的润湿铺展具有三维空间的模型。富锕的Cu-Mn液相沿基体金属二维钎焊表面晶界沟槽润湿铺展的同时,也沿基体金属内部晶界润湿,从而造成晶间贯穿。通常铜基钎料的晶间贯穿不形成脆性相,因而不会恶化接头性能,但若钎焊过程存在拉应力,则可能产生沿晶断裂破坏。  相似文献   

10.
扩散界面场变量模型模拟晶粒长大过程   总被引:3,自引:1,他引:2  
陈大钦  郑子樵  刘祖耀  李世晨 《金属学报》2003,39(12):1238-1242
采用扩散界面场变量模型模拟二维晶粒长大的动力学过程,利用该模型可以避免常规方法中由于格点离散化带来的晶粒长大各向异性,并通过建立晶界能与梯度能量系数间的关系模拟得到了异常晶粒长大过程的微观组织演化图模拟结果得出的晶粒形态、动力学和拓扑学结构特征等与已有的实验结果和理论分析一致.  相似文献   

11.
When current passes through the solid-liquid interface,the growth rate of crystal,solid-liquid interface energy and radius of curvature at dendritic tip will change.Based on this fact,the theoretical relation between the distribution of solute at solid-liquid interface and current density was eastablished.and the effect of current on the distribution coefficient of solute through effecting the rate of crystal growth,the solid-liquid interface energy and the radius of curvature at the dendri8tic tip was discussed.The results show that as the current density increases,the distribution coefficient of solute tends to rise in a whole,and when the former is larger than about 400A/cm^2,the latter varies significantly.  相似文献   

12.
《Acta Materialia》2001,49(16):3143-3147
General equations for the size-dependence of solid–liquid interface energy, grain boundary energy and the intrinsic interface stress without free parameters are derived. The predicted results correspond to computer simulation results, the first principles calculation, the modified embedded-atom-method potential results and experimental results. In addition, the possible physical background of positive or negative interface stress is analyzed.  相似文献   

13.
Abstract

Diffusion bonding of martensitic stainless steel was conducted at different times. Based on the interface characteristic and shear strength, bonding mechanisms were discussed. Results showed that the bonding quality was controlled by void shrinkage and interface grain boundary migration. Large voids with scraggly edges changed to small voids with smooth edges, leading to an increase in interface bonding ratio. Two cases of interface grain boundary migration were revealed: interface grain boundary migration at the triple junction induced by the reduction in grain boundary energy and strain induced interface grain boundary migration resulted from the stored energy. Owing to the void shrinkage and interface grain boundary migration, the shear strength of the joint matched that of the base material.  相似文献   

14.
低碳钢中晶界铁素体/原奥氏体界面对贝氏体转变的影响   总被引:3,自引:0,他引:3  
采用电子背散射衍射 (EBSD) 研究了低碳Fe--C--Mn--Si钢中晶界铁素体/原奥氏体界面对贝氏体形核的影响. 通过两阶段等温热 处理, 获得了晶界铁素体和贝氏体的混合组织. 结合金相观察和取向测量, 发现晶界铁素体与贝氏铁素体之间的界面分为两种, 一种界面不清晰, 一种界面清晰. 分析表明, 在晶界铁素体/贝氏体界面不清晰一侧, 晶界铁素体与原奥氏体保持取向关系, 贝氏体在这类界面形 核生长, 且取向与晶界铁素体保持一致; 在晶界铁素体/贝氏体界面清晰一侧, 晶界铁素体与原奥氏体无取向关系, 且贝氏体与晶界铁素体之间取向差较大.  相似文献   

15.
The interfacial energy of solid bismuth (Bi) in equilibrium with Bi−In eutectic liquid was determined for the equilibrating temperature of 109.5 °C. A radial temperature gradient on the sample was established by heating it from the center with a single heating wire and cooling the outside of the sample at −10 °C with a heating/refrigerating circulating bath containing an aqueous ethylene glycol solution. The equilibrated grain boundary groove shapes of solid Bi in equilibrium with Bi In eutectic liquid (Bi- 47.3 at. %In) were observed from a sample quenched at 109.5 °C. The Gibbs-Thomson coefficient and the solid-liquid interfacial energy of the solid Bi in equilibrium with Bi In eutectic liquid were determined to be (8.4±0.4) × 10−8 K m and (54.0±5.4)×10−3 J m−2 from the observed grain boundary groove shapes. The grain boundary energy of the solid Bi phase was calculated to be (105.5±11.6)×10−3 J m−2 by considering a force balance at the grain boundary grooves. The thermal conductivities of Bi-47.3 at. %In eutectic liquid phase and the solid Bi-47.3 at. %In phase and their ratio at 109.5 °C were measured with a radial heat flow apparatus and a Bridgman type growth apparatus.  相似文献   

16.
韩青有  胡汉起 《金属学报》1988,24(5):392-396
推导了凝固界面前沿液相一侧的液相线温度梯度,并由此梯度提出了评价溶质元素细化晶粒能力大小的参数H。对铝基合金的实验结果表明:H参数数值越大,铸态晶粒尺寸越小。因此,H参数可用于指导晶粒细化剂的选择。  相似文献   

17.
INTERACTIONOFPARTICLESWITHASOLIDIFIEDINTERFACEDURINGSOLIDIFICATIONOFMETALMATRIXCOMPOSITEREINFORCEDWITHPARTICLESCHUShuangjie;W...  相似文献   

18.
相场法模拟凝固过程中界面效应对晶粒形核的影响   总被引:2,自引:0,他引:2  
采用连续相场模型对晶粒形核过程进行模拟,从动力学角度考虑,引入类似于纳米颗粒的界面效应,分析它对形核过程的影响;同时研究形核过程中晶核的析出、形核数目变化、晶界厚度变化以及晶核生长的特点。结果表明,界面效应为形核过程提供驱动力,促使晶核的快速长大;形核过程中晶核数目随时间逐渐增多,晶核尺寸逐渐增大,晶核生长速度较快,同时晶粒位向取向参数的变化反映了晶粒尺寸和晶界厚度的变化。  相似文献   

19.
以冶金硅为原料,探索采用具有高温度梯度的真空定向凝固技术制备低成本太阳能级多晶硅,并研究其在不同生长条件下的微观组织特征、晶界与晶粒大小、固液界面形貌以及位错结构。结果表明,当凝固速率低于60μm/s时,能获得具有高密度和良好取向的定向凝固多晶硅棒状试样,硅晶粒大小随凝固速率的增大而减小;在控制凝固过程,获得平的固液界面形貌是获得沿凝固方向排列柱状晶的关键;由于硅的小平面生长特性,微观组织中出现了位错生长台阶和孪晶结构;在晶粒中,位错分布呈现不均匀性,并且位错密度随凝固速率的增加而增加;在此基础上,讨论了多晶硅的生长行为以及位错形成机制。  相似文献   

20.
不锈钢/Al固液轧制复合板材界面的精细结构   总被引:4,自引:0,他引:4  
张彩碚  董林 《金属学报》1999,35(2):117-120
应用场发射透射电子显微镜研究了不锈钢/Al固液轧制复合板材界面的精细结构。结果表明,在钢-Al之间存在主要由两种金属间化合物组成的界面反应层。靠近钢处由一层细小的(Fe,Cr,Ni)2Al5纳米晶组成,靠近Al处由纳米级的(Fe,Cr,Ni)4Al13柱状晶组成。反应层附近的Al中有各种形态的(Fe,Cr,Ni)4Al13相析出,并对界面结构的形成进行了初步的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号