首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mg-Y-Mn-Sc合金的铸态组织及其热处理行为   总被引:1,自引:0,他引:1  
采用水淬工艺制备了Mg-Y-Mn-Sc合金铸锭,通过OM、SEM、XRD等分析手段,研究了合金铸态组织结构特征以及经不同时间520℃固溶处理后组织结构的演变行为。结果表明,合金铸态组织的晶粒粗大,枝晶不发达,有大量的“辫”状孪晶,存在第二相呈颗粒状按线形排列分布。随着固溶时间的延长,晶粒由大变小,然后变粗;孪晶由少增多,最后随着晶粒的变大而逐渐减少,其组织和结构变化明显地表现出固溶体分解、分散相的溶解和聚集行为。通过控制固溶温度和时间,可获得铸态合金晶粒细化的效果  相似文献   

2.
固溶处理对800H合金组织和硬度的影响   总被引:1,自引:1,他引:0  
研究了不同固溶处理工艺对800H合金组织和硬度的影响。结果表明,不同固溶处理温度对800H合金晶粒尺寸有很大影响;1050~1200℃固溶处理时,晶粒正常长大,晶粒长大激活能Q=309.3 kJ/mol;1050~1100℃固溶处理后,晶内仍有大量未固溶的富铬碳化物;1150℃固溶后,晶内富铬碳化物基本溶解;在1200℃固溶处理时,随着保温时间的延长,晶粒正常长大;晶粒尺寸与硬度符合Hall-Petch关系。  相似文献   

3.
采用光镜、扫描电镜对1种镍基单晶高温合金的铸态组织和不同温度固溶处理后的组织进行了观察,研究了不同温度固溶处理对γ′相尺寸、γ/γ′共晶、成分偏析的影响。结果表明:合金枝晶间γ′相的固溶温度高于枝晶干γ′相的固溶温度,随固溶处理温度的升高,γ′相尺寸略有增加,γ/γ′共晶量及成分偏析降低;1290℃,4h,AC固溶处理后合金枝晶干、间γ′相全部固溶,1310℃,4h,AC固溶处理后合金中γ/γ′共晶全部消除,1320℃固溶处理时,合金中出现初溶现象;确定1310℃,4h,AC为合金的固溶处理工艺。  相似文献   

4.
基于扩散理论运用和具体分析,本工作对于所研制的Ni-Cr-Mo-Cu铸态合金的固溶处理工艺及其对成分、组织和腐蚀抗力的影响进行了试验研究.结果表明:手工电弧熔炼、真窄感应熔炼和真空自耗电极熔炼的铸态组织有明显区别,分别为较细的胞状或网络状结构(其胞尺寸约20μm)、粗大的树枝晶(其枝晶间距80~100μm)和发达的方向性树枝晶组织(间距为60~80μm).经1140~1170 ℃、2.5h的固溶处理后,上述胞状或枝晶组织消失、偏析组织达到均匀化.与铸态合金相比,固溶状态的合金在4种介质(50%HNO3、30%HCl、15?Cl3和混合酸)中的耐蚀性都获得提高(15%~25%以上).  相似文献   

5.
采用热力学相计算、光学显微镜和场发射扫描电镜等实验方法研究了镍基粉末高温合金进行亚固溶热处理对合金双重晶粒组织的影响。结果表明:合金热处理过程中固溶温度和时间是控制合金晶粒尺寸的重要因素。合金中γ'相的固溶温度为1160℃。锻态合金在固溶热处理前先进行亚固溶热处理,可使锻态组织的晶粒尺寸均匀化,有利于固溶热处理控制晶粒尺寸,得到合适的晶粒度;在合金固溶热处理后再进行亚固溶热处理,晶粒尺寸发生适度的粗化和长大,有利于调整固溶热处理后的晶粒尺寸以改善合金力学性能。  相似文献   

6.
研究了4种固溶温度:1000、1040和1080和1120℃×4 h,AC(空冷)+双时效(845℃×24 h/AC+760℃×16 h/AC)热处理制度对铸造waspaloy合金组织的影响。结果表明,铸态waspaloy合金组织由γ基体、团状γ'相和MC碳化物组成。固溶处理后,铸态γ'相溶解到基体中,并随固溶温度升高,铸态γ'相含量逐渐减少。当固溶温度大于1080℃时,枝晶形貌消失,铸态γ'相完全溶解;在随后845℃稳定化处理过程中,均匀细小的二次γ'相开始析出,MC碳化物开始分解,并在晶界处析出不连续的粒状M23C6碳化物;经过760℃时效处理后,更多均匀细小的二次γ'相析出并长大。最终确定铸造waspaloy合金的最佳固溶温度应大于1080℃,此时经时效后组织更加均匀一致。  相似文献   

7.
采用螺旋选晶法,制备了一种镍基单晶高温合金。在非真空箱式电阻炉中进行分级均匀化热处理,研究了热处理制度对合金显微组织及持久性能的影响。结果表明:合金的铸态组织由γ-Ni固溶体相、初生和次生的γ-′Ni3Al相、以及γ/γ′共晶相组成;1 305~1 310℃、16 h固溶处理后,次生γ′全部固溶,少量γ/γ′共晶没有完全固溶;1 315℃、16 h固溶处理后,γ/γ′共晶全部固溶;1 320℃、2 h固溶处理后,出现少量初熔;两次时效处理明显改变了γ′的尺寸、形貌及分布;合金经1 180℃、2 h 1 290℃、2 h 1 315℃、16 h AC 1 140℃、4 h AC 870℃、24 h AC完全热处理后,在1 100℃,137 MPa条件下持久寿命达到100 h。持久裂纹主要沿与拉应力垂直的枝晶间横向段萌生扩展,与γ/γ′共晶完全固溶状态相比,未固溶的γ/γ′共晶更容易成为主要裂纹源。  相似文献   

8.
高昂  钱张信  刘德学 《金属热处理》2021,46(11):195-198
通过显微组织观察和背散射电子扫描观察了不同时间、不同温度的固溶处理对超级奥氏体不锈钢254SMO铸态组织的影响,并采用电子探针技术观察了钢中σ相的溶解过程。结果表明,随着固溶时间和温度的增加,不锈钢中的铸态枝晶组织逐渐消融,偏析逐渐消除,σ相逐渐溶解并转化为δ相(铁素体)。其中1280 ℃×9 h固溶处理的效果最好。  相似文献   

9.
在300~450 ℃固溶温度下对挤压态WE43镁合金进行不同时间的固溶处理,研究了固溶温度及时间对WE43镁合金组织和晶粒度的影响。结果表明,固溶处理后,合金中Mg12Nd和Mg-Y-Nd相发生溶解,含量减少,且沿晶界断续分布。固溶温度对挤压态WE43镁合金的晶粒尺寸起决定性作用,在380 ℃固溶处理1 h时,合金晶粒尺寸最为理想,且析出相含量较少。  相似文献   

10.
对新型镍基粉末高温合金(FGH98Ⅰ)在不同温度下进行固溶热处理,采用热力学相计算、光学显微镜、场发射扫描电镜及化学相分析等研究了亚固溶和过固溶合金的析出相和显微组织,并综合分析了组织与性能的关系。结果表明:FGH98Ⅰ合金经1130℃亚固溶和1190℃过固溶处理后的析出相均为γ’、MC、M23C6和M3B2等,未发现TCP(拓扑密堆)相。FGH98Ⅰ合金亚固溶热处理后晶粒稍有长大,存在尺寸不同的初次、二次和三次γ′相;过固溶热处理合金的晶粒明显长大,存在单模分布的二次γ′相;前者由于晶粒较小使强度更高,后者因减小二次γ′相尺寸和消除初次γ′相,PPB(原始颗粒边界)和残余枝晶,提高了合金的高温塑性和持久性能,说明不同晶粒尺寸和γ′相特征是FGH98Ⅰ盘件获得双性能的关键因素。  相似文献   

11.
Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能   总被引:2,自引:1,他引:2  
通过金相、扫描电镜、透射电镜和X射线衍射仪以及拉伸性能和电导率测试,研究Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织性能。研究结果表明:含0.12%Sc的7000系铝合金铸态组织为细小的等轴晶;合金经强化固溶和T6处理后,抗拉强度σb达829.4MPa,伸长率δ为5.7%;合金经一般固溶及RRA处理后,σb为733.4MPa,δ为5.4%,电导率为37.6%。合金强化机理主要为Al3(Sc,Zr)引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

12.
制备了成分Al-5.8Zn-2.5Mg-1.6Cu-0.2Cr和Al-5.8Zn.2.5Mg-1.6Cu-0.2Cr-0.23Sc-0.12Zr的两种合金。通过金相显微镜及电镜观察、力学性能及腐蚀性能测试,分析了两种合金不同处理状态的显微组织及其不同状态下的力学性能和腐蚀性能。结果表明,添加Sc、Zr能显著细化合金的铸态组织,对合金的力学性能及腐蚀性能也起到极大的提高作用。添加Sc、Zr的2#合金与1#合金相比较,经T6处理后,前者的抗拉强度提高110N/mm^2,屈服强度提高91N/mm^2,伸长率也略有提高。  相似文献   

13.
采用透射电子显微镜,研究含钪Al-Zn-Mg-Cu-Zr系铸态合金在退火过程中二次Al3(Sc,Zr)粒子的析出形貌、尺寸及分布。结果表明:含0.20%Sc的7系铝合金铸态试样在450℃退火2h后,α(Al)基体内析出呈豆瓣状的二次Al3(Sc,Zr)粒子;在450℃退火32h后,Al3(Sc,Zr)粒子尺寸为16~23nm;在450℃退火32h后的二次Al3(Sc,Zr)相与α(Al)基体完全共格。  相似文献   

14.
含Sc超高强Al-Zn-Mg-Cu-Zr合金的回归再时效处理制度   总被引:2,自引:0,他引:2  
采用透射电镜分析、力学拉伸性能测试和电导率测试, 研究不同回归再时效(RRA)处理制度对含Sc超高强Al-Zn-Mg-Cu-Zr合金组织与性能的影响.结果表明:采用120 ℃,24 h预时效+180 ℃,30 min回归处理+120 ℃,24 h终时效的RRA处理工艺,可以使合金获得理想的力学性能和抗应力腐蚀性能;与T6态相比,该工艺获得的合金强度仅略微下降,而电导率则大大提高;含Sc超高强Al-Zn-Mg-Cu-Zr合金经RRA处理后,晶内含大量均匀细小的η'相和少量的η平衡相,合金晶界处的平衡相粗化明显,呈现断续、孤立分布;与T6态处理的合金相比,无沉淀析出带变宽;其晶内析出相与T6峰值时效态的类似,晶界组织与双级过时效态的组织类似.  相似文献   

15.
针对飞机战伤抢修和日常维修工作发展的要求,自行研制了具有高的综合力学性能的Al-5Mg-0.3Sc板材,利用金相显微镜、扫描电镜等分析手段研究了Sc对Al-Mg合金组织、性能的影响规律。试验研究表明:添加质量分数为0.3%的Sc的Al-Mg合金铸态组织得到显著细化,枝晶组织在相当程度上得到消除;Al-5Mg-0.3Sc的力学性能和2A12(LY12)的力学性能相当,而Al-5Mg-0.3Sc比2A12有较高的抗海水腐蚀能力;Al-5Mg-0.3Sc板材可以替代2A12板材作为飞机损伤铝合金结构板材的修复材料。  相似文献   

16.
用单辊搅拌冷却技术(Shearing-Cooling-Rolling简称SCR技术)和在线固溶处理方法制备了Al-3Mg、Al-3Mg-0.5Sc合金线材。研究了不同热处理工艺对Al-3Mg-0.5Sc合金线材力学性能的影响;用透射电镜观察其显微组织,探讨该合金线材的强化机制。结果表明,Al-3Mg-0.5Sc合金线材在铸挤态、T6、T8、T9状态的抗拉强度比铸挤态Al-3Mg合金线材的提高了84 N/mm2~207 N/mm2;该合金线材的强化机制为晶界强化、位错强化及Al3Sc粒子的沉淀强化。  相似文献   

17.
综合利用Miedema模型计算和MTDATA热力学计算软件与相应的Al基合金数据库,计算出含微量稀土元素Sc的Al-Mg合金可能析出的热力学平衡相,讨论组成对热力学平衡相的影响,分析各相的析出规律,重点分析Al3Sc相作为平衡相的变化规律。结果表明:微量稀土元素Sc在Al-Mg合金中仅以Al3Sc相的形式存在,采用Miedema模型计算出的Al3Sc的生成热为-35.11 kJ/mol,MTDATA分析证明Al3Sc相具有很好的热力学稳定性,理论上在温度高达900 K左右时才开始出现熔化且非常缓慢,可通过调节加入的稀土Sc的含量来控制主要强化相Al3Sc在铝镁合金中的含量。  相似文献   

18.
Sc对Al-Zn-Mg-Cu-Zr合金铸态组织和力学性能的影响   总被引:3,自引:0,他引:3  
采用金相显微镜、扫描电镜和能谱分析,研究Sc对Al-9.0Zn-2.5Mg-2.5Cu-0.15Zr合金铸态组织和力学性能的影响。结果表明,添加0.20%-0.60%的Sc,会使合金的铸态组织由粗大的树枝晶变为等轴晶,并使Cu的偏聚减轻,且Sc含量越高,合金铸态组织越细,Sc含量为0.60%的合金铸态组织最细小;随着Sc含量的增加,合金的抗拉强度升高,T6态时,Sc含量为0.60%的合金抗拉强度高达783.9 MPa。从熔体中析出的Al3(Sc,Zr)一次粒子具有与α(Al)基体相同的FCC晶格,晶格常数接近,可有效地细化合金的铸态组织。合金强化机理主要为Al3(Sc,Zr)引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

19.
微量Sc对AA7085铝合金组织与性能的影响   总被引:3,自引:2,他引:1  
通过铸锭冶金工艺,制备含微量Sc的AA7085铝合金。采用金相观察、力学性能测试、扫描电镜及透射电镜分析,研究添加0.3%Sc对基体合金的铸态及锻造态的显微组织和力学性能的影响。结果表明,添加0.3%Sc能细化铸态合金的晶粒,抑制锻造态合金的再结晶,最终提高基体合金的强度和断裂韧性;含0.3%Sc的合金抗拉强度达到562MPa,断裂韧性KIC(S-L)达到34MPa·m1/2。含Sc的AA7085合金的强化机制主要是Al3(Sc,Zr)相引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

20.
Sc微合金化对Al-Zn-Mg-Cu-Zr合金组织性能的影响   总被引:5,自引:3,他引:2  
采用铸锭冶金法制备了Al-8.0Zn-2.0Mg-1.2Cu-0.15Zr-xSc合金,对合金进行了固溶、时效处理,测试了不同状态下合金的力学性能和电导率,利用光学显微镜、扫描电镜和透射电子显微镜研究了合金不同状态的显微组织。结果表明:添加微量钪形成的一次Al3(Sc,Zr)相可作为异质形核核心,细化合金铸态组织;均匀化退火过程中析出的二次Al3(Sc,Zr)粒子强烈钉扎位错和亚晶界,有效阻碍固溶处理过程中合金的再结晶;含0.30%Sc的Al-Zn-Mg-Cu-Zr合金的抗拉强度和伸长率显著高于不加钪的铝合金,经一般固溶及回归再时效(RRA)处理后含0.30%Sc合金的抗拉强度提高36 MPa、屈服强度提高30 MPa、伸长率提高3.0%;采用470℃×60 min+485℃×60 min强化固溶处理,降低合金固溶态的电导率,将合金固溶态以及T6态的抗拉强度分别提高了79.6 MPa、55.8 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号