首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
One kind of Mg3.5Zn0.6Gd-based alloy strengthened with quasicrystals was designed, and the effect of alloying elements on microstructure and mechanical properties of as-cast Mg-Zn-Gd alloy at room temperature and elevated temperatures were studied. The results indicate that MgZnCu Laves phase, which coexists with quasicrystal at grain boundary, emerges with the addition of copper element in Mg-Zn-Gd alloy. The strength of alloys exhibits the parabola curve with the increase of copper content. The alloy with 1.5% (mole fraction) Cu shows better mechanical properties at room temperature: tensile strength 176 MPa, yield strength 176 MPa and elongation 6.5%. The existence of MgZnCu Laves phase can effectively improve the heat resistance and elevated temperature properties of the alloy. The alloy with 1.5% Cu has better mechanical properties at 200℃ : tensile strength 130 MPa and elongation 18.5%. The creep test of the alloys at 200℃ and 50 MPa for 102 h indicates that Mg3.5Zn0.6Gd alloy reinforced with quasicrystal has better creep properties than AE42, which can be further improved with the introduction of Laves phase in the alloy.  相似文献   

2.
Generally, the good combination of pre-deformation and aging can improve the mechanical strength of the Al–Cu–Li–Mg alloys. However, the effects of pre-deformation on competitive precipitation relationship and precipitation strengthening have not been clarified in detail in Al–Cu–Li–Mg alloys with high Mg. In the present study, the effects of pre-deformation level on the microstructure and mechanical properties of an Al–2.95 Cu–1.55 Li–0.57 Mg–0.18 Zr alloy have been investigated. It is found that the introduction of dislocation by 5% pre-deformation can facilitate the precipitation of new successive composite precipitates and T _1 precipitates along the sub-grain boundaries or dislocations and inhibit the precipitation of dispersive GPB zones which is the main precipitates of the alloys without pre-deformation. The introduction of 5% pre-deformation can enhance the mechanical properties considerably. When the pre-deformation level increases from 5 to 15%, the number density of the successive composite precipitates and T _1 precipitates increases, and the aspect ratio of T _1 precipitates decreases. The decrease in T _1 precipitate aspect ratio and the increment of the successive composite precipitates result in the reduction in precipitation strengthening. Therefore, the increase in pre-deformation level from 5 to 15% does not further improve the mechanical properties of the alloys, although the dislocation strengthening increases continuously.  相似文献   

3.
The effect of Nd addition and the in?uence of extrusion processes on the microstructure and mechanical properties of Mg–6Zn–0.5Zr(ZK60) and Mg–6Zn–1.5Nd–0.5Zr(ZKNd602) alloys were investigated. Nd element can obviously re?ne the microstructure of both as-cast and asextruded Mg–Zn–Nd–Zr alloy. All of the extruded alloys exhibit a bimodal grain structure composed of equiaxed?ne recrystallized(DRXed) grains and elongated coarse un DRXed grains. It is necessary to achieve high strength,particularly the yield strength, for ZKNd602 alloy, when it is extruded with a lower extrusion temperature, a suitable extrusion ratio and a relatively lower extrusion ram speed. In this study, the ultimate tensile strength(UTS),yield strength(YS) and elongation(El) of the extruded ZKNd602 alloy were 421 MPa, 402 MPa and 6.7 %,respectively, with extrusion temperature of 290 °C, extrusion ratio of 18:1 and a ram speed of approximate0.4 mm·s~(-1). Meanwhile, the extrusion process has obvious effects on the room-temperature properties but weak effects on the high-temperature properties.  相似文献   

4.
《中国铸造》2012,(1):43-47
To improve the strength,hardness and heat resistance of Mg-Zn based alloys,the effects of Cu addition on the as-cast microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy were investigated by means of Brinell hardness measurement,scanning electron microscopy (SEM),energy dispersive spectroscopy (EDS),XRD and tensile tests at room and elevated temperatures.The results show that the microstructure of as-cast Mg-10Zn-5Al-0.1Sb alloy is composed of α-Mg,t-Mg32(Al,Zn)49,φ-Al2Mg5Zn2 and Mg3Sb2 phases.The morphologies of these phases in the Cu-containing alloys change from semi-continuous long strip to black herringbone as well as particle-like shapes with increasing Cu content.When the addition of Cu is over 1.0wt.%,the formation of a new thermally-stable Mg2Cu phase can be observed.The Brinell hardness,room temperature and elevated temperature strengths firstly increase and then decrease as the Cu content increases.Among the Cu-containing alloys,the alloy with the addition of 2.0wt.% Cu exhibits the optimum mechanical properties.Its hardness and strengths at room and elevated temperatures are 79.35 HB,190MPa and 160MPa,which are increased by 9.65%,21.1% and 14.3%,respectively compared with those of the Cu-free one.After T6 heat treatment,the strengths at room and elevated temperatures are improved by 20% and 10%,respectively compared with those of the as-cast alloy.This research results provide a new way for strengthening of magnesium alloys at room and elevated temperatures,and a method of producing thermally-stable Mg-10Zn-5Al based high zinc magnesium alloys.  相似文献   

5.
The effects of Zn content on the as-cast microstructure and mechanical properties of Mg-xZn-4Al alloys containing TiC and rare earth elements were investigated by optical microscopy(OM), scanning electron microscopy(SEM) analysis, X-ray diffraction (XRD) analysis and tensile test. The results show that Zn content which increased from 8% to 12% does not obviously influence on the alloy phase type of the Mg-xZn-4Al experimental alloys containing 0.25%RE and 1%TiC, but with Zn content increasing from 8% to 12%, the amount of Mg32(Al,Zn)49 phase in the as-cast microstructure of the experimental alloys increases and its distribution becomes more continuous. In addition, the Mg-10Zn-4Al alloy containing 0.25%RE and 1TiC has the highest ultimate tensile strength at room temperature and 150 ℃ and highest yield strength and elongation at 150 ℃ Furthermore, with Zn content increasing from 8% to 12%, the yield strength and elongation of Mg-xZn-4Al experimental alloys containing 0.25%RE and 1%TiC increase and decrease at room temperature, respectively.  相似文献   

6.
As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.The present paper reviews the strengthening mechanisms,tensile properties and modification results of commercial high strength cast Mg alloys;as well as the development of Mg-Gd,Mg-Nd and Mg-Sn based alloys.It concludes that precipitation strengthening is the most important strengthening mechanism in high strength cast Mg alloys,which contributes more than 60%of yield strength in solution&peak-aged(T6)cast Mg alloys.For the yield strength,the alloys follow the sequence of Mg-Gd(Y)-Ag〉Mg-Gd(Y)-Zn〉Mg-Gd-Y/Sm/Nd〉Mg-Y-Nd(WE series)〉ZK61〉Mg-Nd〉AZ91〉Mg-Sn.Mg-Gd(Y)-Ag based alloys are the strongest cast Mg alloys at present,followed by Mg-Gd(Y)-Zn based alloys.The high yield strengths of Mg-Gd(Y)-Ag and Mg-Gd(Y)-Zn cast alloys are due to the co-precipitation of basal and prismatic meta-stable phases.  相似文献   

7.
Al-Zn-Mg-Cu-Zr alloys containing Yb were prepared by cast metallurgy. Effect of 0.30% Yb additions on the microstructure and properties of 7A60 aluminum alloys with T6 and T77 aging treatments was investigated by TEM, optical microscopy, hardness and electric conductivity measurement, tensile test and stress corrosion cracking test. The results show that the Yb additions to high strength Al-Zn-Mg-Cu-Zr aluminum alloys can produce fine coherent dispersoids. Those dispersoids can strongly pin dislocation and subgrain boundaries, which can significantly retard the recrystallization by inhibiting the nucleation of recrystallization and the growth of subgrains and keeping low-angle subgrain boundaries. Yb additions can obviously enhance the resistance to stress corrosion cracking and the fracture toughness property, and mildly increase the strength and ductility with T6 and T77 treatments.  相似文献   

8.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

9.
Magnesium alloys based on Nd and Zn are promising materials for both aviation industry and medical applications.Superior mechanical properties of these materials can be achieved by thermomechanical processing such as extrusion or rolling and by aging treatment, which can significantly strengthen the alloy. The question remains especially about the connection of texture strength created in the alloys based on the specific conditions of preparation. This work focuses on the Mg–3 Nd–0.5 Zn magnesium alloy prepared by hot extrusion of the as-cast state at two different temperatures combined with heat pre-treatment. Extrusion ratio of 16 and rate of 0.2 mm/s at 350 and 400 °C were selected for material preparation. The structures of prepared materials were studied by scanning electron microscopy and transmission electron microscopy. The effect of microstructure on mechanical properties was evaluated. Obtained results revealed the strong effect of thermal pre-treatment on final microstructure and mechanical properties of extruded materials. The Hall–Petch relation between grain size and tensile yield strength has been suggested in this paper based on the literature review and presented data. The observed behavior strongly supports the fact that the Hall–Petch of extruded Mg–3Nd–0.5 Zn alloys with different texture intensities cannot be clearly estimated and predicted. In addition, Hall–Petch relations presented in literature can be sufficiently obtained only for fraction of the Mg–3Nd–0.5 Zn alloys.  相似文献   

10.
Optical microscope,X-ray diffractometer,scanning electron microscope,tensile tester and dynamic mechanical analyzer(DMA) were applied to investigate the effects of Y and Zn additions on microstructure,mechanical properties and damping capacity of Mg-3Cu-1Mn(CM31) alloy.The results show that with the increase of Y and Zn contents,the secondary dendrite arm spacing of alloys is reduced;meanwhile,the yield strength is increased.In low strain amplitude,the damping capacity of alloys with Y and Zn addition is lower than that of CM31 alloy.However,in strain amplitude over 5×10-3,the damping capacity of alloy with a trace of Y and Zn addition(1%Y and 2%Zn,mass fraction) increases abnormally with the increase of strain amplitude and is near to that of pure Mg,probably due to the increase of dislocation density caused by the precipitation of secondary phase.The temperature dependence of damping capacity of above alloy was also tested and discussed.  相似文献   

11.
The structure, hardness, abrasion, and erosion wear of Cr-Mo white iron (containing approximately 28 % Cr and 1 % Mo) heat treated at certain temperatures were studied. Results show that the heat treatment of white iron changes the structures and properties; that is morphology, amount, size, and distribution of secondary phases are affected. When white iron was heated at 800 to 850 ‡C the secondary phase precipitated at the phase boundary, making the abrasion and erosion wear worse. When the iron was heated at 900 to 950 ‡C, the secondary phase precipitated dispersively at the matrix, and the corrosion wear was optimum. If the iron is heated at 1000 to 1050 ‡C, the resistance of abrasion is inhibited, as the secondary phases precipitate in large amounts, and the hardness is increased. When the white iron is tempered at 500 to 600 ‡C, the resistance of abrasion is better.  相似文献   

12.
PcBN是cBN的聚晶体,具有尺寸大、各向同性、无解理面等优点,因而应用广泛。商用PcBN大多采用添加黏结剂的方式进行烧结以降低烧结条件,通常是在压力为5.5~7.7 GPa、温度为1600~2300 K条件下合成的。但黏结剂也降低了产品的性能,其维氏硬度在22~45 GPa。鉴于材料本身就是最好的黏结剂,本文对使用4种不同初始材料制备纯相PcBN的烧结行为及材料性能进行介绍和评价。用cBN作为初始材料并配合相关工艺能制备出性能较好的纯相PcBN材料。   相似文献   

13.
14.
A new predictive force model for a single-tooth face milling cutter with a chamfered main cutting edge has been derived. Machining tests has been conducted for fly cutting with a chamfered main cutting edge tools on plane surfaces. An S45C medium carbon plate has been used as the workpiece matrial. Force data from these tests were used to estimate the empirical constants of the mechanical model and to verify its prediction capabilities. The results show a good agreement between the predicted and measured forces.Since tool manufacturers does not provide tools with selected combinations of chamfered main cutting edge, radial angle, axial angle and inclination angles, tool holders manufactured in-house were used in the tests. The tips were prepared to the required geometry using a tool grinder.  相似文献   

15.
16.
Nonlinear sub-harmonic phased array imaging is used to visualize closed cracks. Sub-harmonic imaging has broader beam width than that of input frequency imaging due to its longer wavelength. If the broad beam width results in low image resolution, it can be hard to determine the locations of cracks. Various methods have been developed to enhance the resolution, and MUltiple SIgnal Classification (MUSIC), in particular, is an old but well-established way to do so. A form of sub-harmonic imaging that implements MUSIC is presented here. A numerical simulation was used to compare the proposed method with a conventional one, and MUSIC gave narrower beam width. Experiments also demonstrated that MUSIC could improve the resolution of sub-harmonic imaging.  相似文献   

17.
A thermal model for high speed motorized spindles   总被引:7,自引:0,他引:7  
Lack of a more complete understanding of the system characteristics, particularly thermal effects, severely limits the reliability of high speed spindles to support manufacturing. High speed spindles are notorious for their sudden catastrophic failures without alarming signs at high speeds due to thermal problems. In this paper, a finite difference thermal model is developed to characterize the power distribution of a high speed motorized spindle, in particular the characterization of heat transfer and heat sinks. Without loss of generality, this model is built upon and verified by a custom-built high performance motorized milling spindle of 32 KW and maximum speed of 25 000 rpm (1.5 million DN).  相似文献   

18.
This paper describes the development of software to produce automatically an off-line robot control program when given only the layout of the cell and the part programs for the individual components. Based on an FMS simulation system developed at UMIST, a number of special purpose facilities have been incorporated for programming a robot which have reduced the effort required in the modelling of manufacturing systems. In particular, the co-ordinates are calculated at each point to which the robot gripper moves, the robot control program is generated, auxiliary requirements are displayed on the screen, and the new package is linked to the basic simulation system. While the system is simulating the real system, the robot control program is created automatically. At the same time, the auxiliary requirements of each step are displayed on one of the display screens. The robot control program can then be transmitted from the VAX 11/750 computer on which the simulation runs to a Cromemco microcomputer which is linked to the robot controller.  相似文献   

19.
20.
在高温条件下由于高辐射涂层辐射传热的有效性,引起了广泛的兴趣。本文通过空气喷涂方法制备了一种新型的高辐射涂层。涂层主要成分包括无定型硼硅玻璃粉,Mg2B2O5, MoSi2 和SiB4。涂层的厚度约50 μm。通过实验发现,涂层具有优良的抗热震性能(能够经受超过100次的从950℃到水的冷热循环)。在950℃时涂层的平均辐射率为0.905?.024。经过100次的热循环后,涂层的辐射系数有轻微的减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号