首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC  1000 W mK?1) and low coefficient thermal expansion (CTE  1 ppm K?1). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile α-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 °C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond–Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.  相似文献   

2.
Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology.Microstructures and effect of thermal-cooling cycle treatment(TCCT) on the thermal expansion behaviors of three composites were investigated.The results show that the composites are free of porosity and SiC/Al2O3 particles are distributed uniformly.Inflections at about 300 °C are observed in coefficient of thermal expansion(CTE) versus temperature curves of two SiCp/Al composites,and this characteristic is not affected by TCCT.The TCCT has significant effect on thermal expansion behavior of SiCp/Al composites and CTE of them after 3 cycles is lower than that of 1 or 5 cycles.However,no inflection is observed in Al2O3p/Al composite,while TCCT has effect on CTE of Al2O3p/Al composite.These results should be due to different relaxation behavior of internal stress in three composites.  相似文献   

3.
Dense SiC ceramic matrix composites containing SiC whiskers (SiCw) and MoSi2 phase (SiCw/MoSi2–SiC) are fabricated by a liquid Si infiltration (LSI) method. Pyrolyzed rice husks (RHs) containing SiC whiskers, particles and amorphous carbon are mixed with different amounts of Mo powder to form preforms for the infiltration. Microstructure and mechanical properties of the composites are studied. Fracture mode of the composites is discussed. Results show that the SiC whiskers and fine particles in the pyrolyzed RHs were preserved in the composites after the LSI process. The amorphous carbon and Mo powder in the preforms reacted with molten Si, forming SiC and MoSi2 in the composites. The presence of MoSi2 in the composite increases the elastic modulus but lowers the flexure strength. Content of MoSi2 of ca. 20 wt.% provides an enhanced fracture toughness of 4.1 MPa m1/2 for the composite. But too large amount of MoSi2 caused crack formation in the composite. The compressive residual stress introduced by the formation of MoSi2 and SiC, and the de-bonding of the fine SiC particles and SiC whiskers from the residual Si phase are considered to favor the fracture toughness of the composites.  相似文献   

4.
The ultra-high strength SiCp/Al–10%Zn–3.6%Mg–1.8%Cu–0.36%Zr–0.15%Ni composite was prepared by spray co-deposition followed by extrusion process. The heat treatment processing, microstructures and mechanical properties of the as-processed composite were investigated. The well-bonded SiC/Al interfaces and fine grains of matrix alloy were obtained in the as-extruded composite. The precipitated phase MgZn2 dissolved during solid solution treatment at 490 °C for 1 h, but the Cu-rich phase was residual in the matrix. Comparatively, the Cu-rich phase dissolved into the matrix alloy exposed at 470 °C for 1 h and then at 490 °C for 1 h. The composite heat-treated with 470 °C/1 h + 490 °C/1 h + 120 °C/28 h exhibited high modulus above 100 GPa and ultra-high strength about 785 MPa, which was 30 MPa higher than that of the same composite treated with 490 °C/1 h + 120 °C/28 h processing. The low elongation of the composite can be attributed to the breakage of SiC particulates and interfacial debonding of SiC/Al.  相似文献   

5.
The effects of deformation temperature and strain in hot rolling deformation on strain rate sensitivity of the TiNp/2014 Al composite were studied by tensile tests conducted out at 773, 798, 818 and 838 K with the strain rates from 1.7 ×10?3 to 1.7 × 100 s?1. It is shown that the curves of m value of the TiNp/2014Al composite deformed at different temperatures can be divided into two stages with the variation of strain rate, and the critical strain rates are 10?1 s?1. The optimum deformation temperature of the TiNp/2014 Al composite is near incipient melting temperature of 816 K and the optimum strain rate is a little higher than the critical strain rate. The effect of deformation temperature on strain rate sensitivity is relative to liquid phase helper accommodation. The effect of strain in hot rolling deformation on strain rate sensitivity attributes to change of microstructure and deformation mechanism.  相似文献   

6.
Al–Li–SiCp composites were fabricated by a simple and cost effective stir casting technique. A compound billet technique has been developed to overcome the problems encountered during hot extrusion of these composites. After successful fabrication hardness measurement and room temperature compressive test were carried out on 8090 Al and its composites reinforced with 8, 12 and 18 vol.% SiC particles in as extruded and peak aged conditions. The addition of SiC increases the hardness. 0.2% proof stress and compressive strength of Al–Li–8%SiC and Al–Li–12%SiC composites are higher than the unreinforced alloy. In case of the Al–Li–18%SiC composite, the 0.2% proof stress and compressive strength were higher than the unreinforced alloy but lower than those of Al–Li–8%SiC and Al–Li–12%SiC composites. This is attributed to clustering of particles and poor interfacial bonding.  相似文献   

7.
Dense (ZrB2 + SiC)/Zr2[Al(Si)]4C5 composites with adjustable content of (ZrB2 + SiC) reinforcements (0–30 vol.%) were prepared by in situ hot-pressing. The microstructure, room and high temperature mechanical and thermal physical properties, as well as thermal shock resistance of the composites were investigated and compared with monolithic Zr2[Al(Si)]4C5 ceramic. ZrB2 and SiC incorporated by in situ reaction significantly improve the mechanical properties of Z2[Al(Si)]4C5 by the synergistic action of many mechanisms including particulate reinforcement, crack deflection, branching, bridging, “self-reinforced” microstructure and grain-refinement. With (ZrB2 + SiC) content increasing, the flexural strength, toughness and Vickers hardness show a nearly linear increase from 353 to 621 MPa, 3.88 to 7.85 MPa·m1/2, and 11.7 to 16.7 GPa, respectively. Especially, the 30 vol.% (ZrB2 + SiC)/Zr2[Al(Si)]4C5 composite retains a high modulus up to 1511 °C (357 GPa, 86% of that at 25 °C) and superior strength (404 MPa) at 1300 °C in air. The composite shows higher thermal conductivity (25–1200 °C) and excellent thermal shock resistance at ΔT up to 550 °C. Superior properties render the composites a promising prospect as ultra-high-temperature ceramics.  相似文献   

8.
In recent years, aluminium based cast composites have gained popularity in all the emerging fields of technology owing to their superior high stiffness and strength. The properties of cast composites are dictated largely by the solidification phenomenon, which needs to be well understood by foundry technologists. Information on the solidification studies of cast composites is scarce. However, the theoretical prediction of the solidification behaviour of cast composites by the use of commercially available finite element analysis (FEA) software has not yet been reported. The theoretical prediction can definitely yield good lot of information as regards the cooling rates of the cast composites saving enormous time in experimentation. In light of the above, the present investigation is aimed at the prediction of cooling curves of Al 6061–SiCp composites using finite element analysis. L-shaped composite castings were prepared using stir cast technique. The temperature of the composite during solidification was measured by K-type thermocouple, from which the cooling curves were constructed. Experiments were carried out over a range of particle weight percentage of 2–6 wt% in steps of 2 wt%. Comparison of the cooling curves of Al 6061–SiCp composite with the un-reinforced alloy reveals significant decrease in cooling rate with the addition of SiC particles. A two-dimensional transient heat transfer model was used in commercial finite element analysis software to predict the cooling curves of composite castings. The predicted cooling curves are compared with results obtained from experiments and found to be in good agreement.  相似文献   

9.
Oxidation behavior and subsequent mechanical properties of Ti3SiC2 were studied. The oxide scale has significant effect on strength and hardness, which is mainly attributed due to the mismatch of coefficient of thermal expansion (CTE) of substrate and oxide phases. The improved flexural strength (~650 MPa) could be noticed at 1000 °C; however, at elevated temperature the ductility of Ti3SiC2 was predominant and reduced the strength.  相似文献   

10.
In this study, equilibrium thermodynamic analysis was initially carried out for TiO2:SiO2:C molar ratio of 1:1:4 at 1600 K, 1700 K and 1800 K as a function of Ar/solid reactant ratio. It was predicted that single phase Ti3SiC2 is formed when a critical Ar/solid reactant ratio is exceeded. This behavior is ascribed to the reduction of partial pressures of gaseous reaction products of SiO and CO. Subsequently, formation of Ti3SiC2 phase from carbon coated TiSiO4 powders by carbothermal reduction was investigated as a function temperature, isothermal holding time and Ar flow rate. Carbothermal reduction experiments at 1800 K and at a Ar flow rate of 250 cm3/min for 60 min showed that the optimal C content was determined to be 27.47 wt.%. The ternary carbide compound was not detected within 120 min at 1600 K and 1700 K, but a major TiOC phase along with a minor SiC phase. Whereas at 1800 K, the ternary carbide phase was observed and its amount increased from 6.80 wt.% at 0 min to 38.91 wt.% at 75 min above which it gradually decomposed into the binary carbides. The experiments carried out for various Ar flow rate at 1800 K for 75 min revealed that the highest ternary carbide content (47.84 wt.%) was obtained at a Ar flow rate of 425 cm3/min. The thermodynamic and experimental results indicate that Ti3SiC2 formation takes place via the reaction of pre-formed TiC and SiC phases with the remaining SiO2.  相似文献   

11.
《Acta Materialia》2008,56(16):4522-4528
We report the synthesis of biphasic Pb (46 at.%)–Sn (54 at.%) nanoparticles dispersed in an aluminum matrix and explore the nature of the superconducting transition in these particles. The nanoscaled Pb–Sn alloy particles were dispersed in Al by rapid solidification and the two-phase nature of these particles was characterized by transmission electron imaging, diffraction and composition mapping. A weak superconducting transition occurs at 3.1 K in these alloys, which is much lower than the TC expected for a Pb46Sn54 alloy or that due to the proximity effect between Pb and Sn. We show that it is the superconducting Al matrix with TC = 1.2 K that plays a major role in determining the effective transition temperature of the system.  相似文献   

12.
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites. Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing, hot extrusion and heat treatment. The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface. Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles. The microstructure, relative density and mechanical properties of the composite are significantly improved. When the volume fraction is 15%, the hardness, fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized, which are HB 138.5, 4.02% and 455 MPa, respectively.  相似文献   

13.
W. Xu  X. Wu  T. Honma  S.P. Ringer  K. Xia 《Acta Materialia》2009,57(14):4321-4330
Ultrafine pure Al particles were consolidated into fully dense bulk material using back pressure equal channel angular pressing (BP-ECAP). The consolidation was carried out at 400 °C with a back pressure of 200 MPa. A fully dense Al–Al2O3 composite consisting of mostly nanocrystalline Al and γ-Al2O3, a small fraction of ultrafine Al grains and amorphous alumina was produced after four passes from the freshly formed particles. In contrast, no consolidation was achieved from the aged particles which had been kept for between 18 and 24 months. The formation of the nanostructure was attributed to the interaction between severe shear deformation and in situ oxidation during ECAP. The ultimate strength of the nanostructured material reached ~740 MPa in compression with a plastic strain to fracture of the order of ~1%. It is demonstrated that ultrafine particles can be well consolidated by ECAP when they are sheared to change shape rather than to slide over each other.  相似文献   

14.
The synthesis of Ti3SiC2 MAX phase by self-propagating high-temperature synthesis (SHS) and pressureless argon shielding synthesis has been investigated following different pathways pertaining to the reactant systems Ti/Si/C, Ti/SiC/C and Ti/TiC/Si. Silicon in excess ranging from 10 to 50 mol% was employed to obtain powders mainly constituted by Ti3SiC2.Optimizing the excess of silicon and the pressing technique, the resultant powders with Ti3SiC2 content near to 100% were obtained. Result was consequent to the use of pressureless argon shielding synthesis obtained with 30 mol% of silicon excess in the examined different systems. The Ti3SiC2 was also obtained by SHS, but with lower proportion (88% and 86% from 3Ti + 1.2SiC + 0.8C and 3Ti + 1.3Si + 2C respectively). These results driving from XRD patterns were confirmed by FESEM observations and the EDAX analyses.  相似文献   

15.
Systematic characterization of the shape memory properties of a quaternary Ni45.3–Ti29.7–Hf20–Pd5 (at.%) polycrystalline alloy was performed in compression after selected aging treatments. Precipitation characteristics were revealed by transmission electron microscopy. The effects of aging temperature and time on transformation temperatures, recoverable and residual strains, and temperature and stress hystereses were determined by differential scanning calorimetry, constant-load thermal cycling experiments and isothermal strain cycling (superelasticity) tests. The crystal structure and lattice parameters of the transforming phases were determined from X-ray diffraction analysis. It was revealed that precipitation hardening significantly improved the shape memory properties of the NiTiHfPd alloy. Under optimum aging conditions, shape memory strains of up to 4% under 1 GPa were possible, and superelasticity experiments resulted in full strain recovery without any plastic deformation, even at stress levels as high as 2 GPa. The NiTiHfPd polycrystalline alloy exhibited very high damping capacity/absorbed energy (30–34 J cm?3) and work output (30–35 J cm?3), which were attributed to the ability to operate at high stress levels without significant plastic deformation and to a high mechanical hysteresis (>900 MPa) at temperatures ranging from 20 °C to 80 °C.  相似文献   

16.
A major challenge in achieving the best potential of SiCp-reinforced aluminum composites is to homogeneously disperse SiC particles within the aluminum alloys. The presence of coarse Si fibers with non-uniform distribution in cast Al-Si alloys, which may lead to poor mechanical properties, is another important problem that limits the application of these alloys. In order to eliminate these problems, accumulative roll bonding (ARB) process was used in this study as a very effective method for improving the microstructure and mechanical properties of the Al356/SiCp composite. It was found that when the number of ARB cycles was increased, the uniformity of the Si and SiCp in the aluminum matrix improved, the Si particles became finer and more spheroidal, the free zones of Si and SiC particles disappeared, the porosity of composite decreased, the bonding quality between SiCp and matrix improved, and therefore mechanical properties of the composites were improved. The microstructure of the manufactured Al356/SiCp composite after six ARB cycles indicated a completely modified structure so that its tensile strength and elongation values reached 318 MPa and 5.9%, which were 3.1 and 3.7 times greater than those of the as-cast composite, respectively.  相似文献   

17.
The wetting behavior of Al–Ge alloys on TiH2 substrates was investigated by an improved sessile drop method under high vacuum and in a temperature range of 773–818 K. Results indicate that the equilibrium contact angles of Al–Ge/TiH2 increase linearly with temperature according to the following formula: θ = 0.2882T ? 85.04, and decrease linearly as the Ge content increases from 25.2% to 36.2% according to the formula: θ = 214 ? 200Ge (wt.%). The worst wetting behavior was obtained for a pure Al/TiH2 system at its foaming temperature (973 K). TiH2 particles were prone to aggregate and were thus difficult to disperse. This could be one of the reasons for closed-cell aluminum foam products having non-uniform pores.  相似文献   

18.
《Scripta materialia》2004,50(6):845-848
The thermal expansion behavior of three near-stoichiometric variants of ruthenium aluminide (RuAl) has been investigated. The coefficient of thermal expansion (CTE) varied between 5.5 × 10−6/K and 11 × 10−6/K in the temperature range from 400 to 1773 K. The behavior of RuAl is compared to that of other high temperature B2 intermetallics with emphasis on the use of RuAl as a bond coat material within a thermal barrier coating system.  相似文献   

19.
《Acta Materialia》2008,56(18):5345-5354
An analytical framework for determination of scratch-induced residual stress within SiC grains of ZrB2–SiC composite is developed. Using a “secular equation” that relates strain to Raman-peak shift for zinc-blende structures and the concept of sliding blister field model for scratch-induced residual stress, explicit expressions are derived for residual stress calculation in terms of phonon deformation potentials and Raman peak shift. It is determined that, in the as-processed composite, thermal expansion coefficient mismatch between ZrB2 and SiC induces compressive residual stress of 1.731 GPa within the SiC grains and a tensile tangential stress of 1.126 GPa at the ZrB2–SiC interfaces. With increasing scratch loads, the residual stress within the SiC grains becomes tensile and increases in magnitude with scratch load. At a scratch load of 250 mN, the calculated residual stress in SiC was 2.6 GPa. Despite this high value, no fracture was observed in SiC grains, which has been rationalized based on fracture strength calculations from Griffith theory.  相似文献   

20.
A 50/50 vol.% Al/SiC composite was made via melt infiltration of an aluminum alloy into a porous beech wood-derived SiC preform. The honeycomb-like composite microstructure consisted of an interconnected SiC phase surrounding discrete Al “fibers” aligned in the growth direction of the beech wood. High energy synchrotron X-ray diffraction was used to measure the volume averaged lattice strains in both the SiC and Al phases during in situ compressive loading up to an applied stress of ?530 MPa. Load transfer from the Al to the SiC was observed, and the Al yielded at an applied stress of above ?213 MPa. The elastic behavior of the composite was modeled with both an isostrain rule of mixtures calculation and variational bounds for the effective elastic modulus. Furthermore, calculations of the von Mises effective stress of the SiC and Al phases showed that the wood-derived SiC was a more effective reinforcement than either SiC particle- or whisker-reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号