首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用机械方法对WC-Co硬质合金表面进行焊前毛化加工,然后采用BNi2钎料对毛化后的硬质合金表面进行预涂覆处理,最终利用毛化凸台在铝中的压入及界面元素的扩散反应实现WC-Co硬质合金与铝的真空扩散连接. 结果表明,接头界面结构为:Al/Al3Ni+Al3Ni2+Al5Co2/Co-Ni(s.s)/W-Co-Ni/WC-Co. 随着预涂覆温度的升高,W-Co-Ni化合物相的体积增大,界面由平齐向不规则演变;随着扩散温度的提高,Al3Ni+Al3Ni2+Al5Co2层厚度增加. 当工艺参数增加时,接头抗剪强度呈现出先升高后降低的变化趋势,特别是当预涂覆温度为1 050 ℃,扩散连接温度为575 ℃,保温时间为90 min时,接头室温抗剪强度达到最大值51 MPa,明显高于未毛化接头的抗剪强度.  相似文献   

2.
庄志国  丁云龙  张恩诚  周正 《焊接学报》2024,(3):99-106+134-135
利用真空扩散焊接技术,实现了工业纯镁Mg1与工业纯铝Al1060的连接.采用扫描电镜、能谱仪、万能力学试验机、显微硬度测试仪、电化学工作站等对扩散反应层的微观组织、物相成分及其性能进行研究.结果表明,Mg/Al真空扩散焊会在接合处生成由镁铝系金属间化合物组成的扩散反应层,随着保温时间延长,反应层的厚度逐渐增加,微观组织形态发生明显变化.扩散初期反应层呈现为单层结构,Mg2Al3相会在接合界面优先析出.保温时间达到60 min时,界面会生成Mg17Al12新相层.当保温时间延长至90 min时,反应层演变为三层结构,由Mg2Al3层、Mg17Al12层、(Mg17Al12共晶+Mg基固溶体)层组成;随着保温时间延长,接头的剪切强度呈先升高后降低的趋势,在保温60 min时可承受的剪切力达到1 245.7 N,断裂发生在靠近铝侧的Mg2Al3...  相似文献   

3.
采用Al-Si-Mg钎料成功实现了5005铝合金与1Cr18Ni9Ti不锈钢的真空钎焊,借助扫描电镜、能谱分析仪和X射线衍射仪对焊后接头界面组织进行分析,同时对接头抗剪强度进行测试.结果表明,焊后接头界面结构从1Cr18Ni9Ti不锈钢侧到5005铝合金侧的界面组织依次为FeAl,FeAl3,FemAln+αAl.随着钎焊温度的升高或保温时间的延长,接头抗剪强度均呈现先升高后降低的变化趋势.当钎焊温度为580℃,保温时间为15 min时,接头抗剪强度达到最大值49 MPa.接头断裂形式受钎焊温度的影响,当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及FemAln+αAl反应层;温度升高至580℃时,接头断裂于FemAln+αAl反应层中,接头抗剪强度最高.  相似文献   

4.
采用B2O3,Bi2O3,TiO 2 混合钎料,通过钎焊连接方法实现K9玻璃与纯Ti在低温下的连接;通过光学显微镜和SEM等方法研究钎焊时间对接头界面组织及性能的影响. 结果表明,当B2O3:Bi2O3:TiO2成分为5:4:1时,钎焊温度为650 ℃,保温时间分别为60,80和100 min时,抗剪强度分别为11.5,15.1和12.1 MPa. K9玻璃/钎料结合致密,且存在反应层,而纯Ti/钎料侧界面平直,没有明显的过渡层和熔解现象. 接头断裂一种为完全断裂在金属与钎焊层的脆性断裂,抗剪强度为11.5 MPa;另一种为部分断裂在金属与钎焊界面处,部分断裂在玻璃侧的混合断裂,混合断裂接头抗剪强度最高为16.7 MPa.  相似文献   

5.
采用Al-Si-Cu合金粉末扩散钎焊铝铜异种金属,采用SEM,EDS和XRD分析接头微观组织结构,结合三元相图分析了接头形成机理,最后检测了接头力学性能.结果表明,在连接温度530℃,保温时间60 min,压力为1MPa时可形成均匀致密的接头,接头中存在大量条状和鱼骨状的Al-Si-Cu共晶组织,中间层与两母材结合界面处的组织结构不同,在靠近铜侧界面存在三种层状金属间化合物,其成分依次为Cu3Al2,CuAl和CuAl2,在靠近铝侧界面存在一个扩散区,没有形成层状金属间化合物.接头的抗剪强度随保温时间的变化而变化,在保温60 min时达到35 MPa.  相似文献   

6.
采用BNi2钎料,对ZrB2-SiC陶瓷复合材料进行真空钎焊研究.借助SEM,EDS,XRD等分析测试手段分析了界面组织结构及性能.确定了最佳钎焊工艺参数:钎焊温度1160℃,保温时间20 min.结果表明,接头界面产物主要有δ-Ni2Si,β1-Ni3Si,ZrB2+C,Ni(s,s),CrxByCz.随着钎焊温度升高以及保温时间的延长,接头抗剪强度均先升高后降低.钎焊温度1160℃,保温时间20 min,钎焊接头室温抗剪强度达到最大121.3 MPa.钎焊温度和保温时间对接头断裂方式的影响有相似的规律,在保温时间较短时,裂纹主要产生于钎缝中的Ni(s,s)中,之后向Ni元素扩散层中扩展;当保温时间适中时,断裂主要发生在Ni元素扩散层中;当保温时间延长时,裂纹主要产生于含有一定β1-Ni3Si相的Ni(s,s)中,之后向Ni元素扩散层中扩展.  相似文献   

7.
采用Ti-Zr-Be活性钎料作为连接层,在一定工艺参数下真空钎焊Cf/SiC复合材料和304不锈钢.利用SEM,EDS,XRD和俄歇谱仪分析接头微观组织结构,利用剪切试验检测接头力学性能,分析了工艺参数对接头抗剪强度的影响.结果表明,在复合材料附近形成ZrC+TiC+Be2C/Ti-Si反应层,连接层中主要包含FeZr2,锆基固溶体,BeTi,Ti-Zr固溶体等反应产物,304不锈钢附近形成FeTi/αFe反应层.在连接温度为950℃,连接时间为60min时,接头室温抗剪强度最高为109.3 MPa,断裂位置为Cf/SiC复合材料与中间层连接界面靠近复合材料端.  相似文献   

8.
采用真空扩散焊对AZ91镁合金,7075铝合金进行了扩散连接,对焊接接头进行金相显微组织分析.并利用显微硬度计和微机控制电子万能试验机对接头界面扩散区的显微硬度和接头抗剪强度进行分析.研究结果表明.焊接温度和保温时间对接头抗剪强度有显著影响,在连接温度为470℃,保温时间为60min时,过渡层宽度为34.36μm,接头...  相似文献   

9.
以AgCuZn合金为钎料,采用真空钎焊方法实现了Ti(C,N)基金属陶瓷与45钢的牢固连接.研究了连接温度、保温时间和钎料厚度对钎缝接头抗剪强度的影响,并对连接界面区域的微观结构及焊料反应产物进行了SEM, EDS及XRD分析.在本试验中,当连接温度为850 ℃、保温时间为15 min、钎料厚度为 0.4 mm时,得到的接头界面抗剪强度最高,为145.2 Mpa.微观结构结果表明:钎料与两侧母材润湿良好,分别在两侧形成了界面扩散互溶过渡层,良好的界面扩散互溶过渡层是获得较高界面连接强度的主要原因.  相似文献   

10.
采用Cu80Ti20钎料在1413~1493 K的温度,保温时间5~15 min的工艺条件下分别进行了Si3N4陶瓷的高温活性钎焊,在所选工艺条件下均成功得到了无明显缺陷和裂纹的钎焊接头,通过对接头组织和成分的分析,接头的组成为Si3N4陶瓷/TiN界面反应层/Cu-Ti化合物+Ti5Si3/TiN界面反应层/Si3N4陶瓷.在1413 K保温10min条件下,固溶体中的Ti元素扩散至钎缝与母材的界面并发生反应,形成了致密连续的厚度约为1 μm的反应层.获得了钎焊温度、保温时间、钎缝宽度及界面层厚度等对接头强度的影响规律,在试验中所采用的工艺参数条件下,接头抗剪强度达到了105 MPa.  相似文献   

11.
文中通过热浸镀一层纯铝到不锈钢表面,再对0Cr18Ni9不锈钢和LF21铝合金采用高频感应钎焊.当热浸镀时间从10 s增加到50 s时,镀层厚度从7 μm增加到20 μm,反应层由FeAl3向Fe2Al5发生转变.在热浸镀温度为750℃,浸镀时间为10 s时,镀层成型最好,高频感应电流为270 A,加热时间30 s时,抗拉强度达到167.12 MPa,比不浸镀的接头强度高63.8%.主要是因为镀层限制钢中的Fe原子和Al-Si钎料中的Al,Si原子的相互扩散,在热浸镀不锈钢与铝合金反应中使Fe2Al5转化为Fe(Al,Si)2固溶体而未形成5-Al8Fe2Si化合物,降低了界面上硬脆化合物的含量,力学性能随之提高.  相似文献   

12.
针对铝-钢异种金属焊接缺陷多、效率低等问题,提出一种堆焊-搅拌摩擦复合焊接方法,即采用旁路分流电弧焊先在钢板上堆敷铝合金,再采用搅拌摩擦焊进行铝合金堆敷层和铝合金母材的搭接焊,得到在铝-铝界面呈现典型搅拌摩擦焊“洋葱圆环”状结合的铝-铝-钢复合过渡接头. 针对典型焊缝进行铝-钢异种金属接头的组织结构分析.结果表明,搅拌摩擦焊可以有效消除铝合金堆敷层中存在的气孔等缺陷,并实现金属界面层的减薄. 对铝钢结合界面进行EDS扫描,在堆敷铝合金侧可以观察到呈树枝状的Fe相扩散和呈网状的不均匀Si相扩散,结合XRD(X-ray diffraction)分析其主要成分为Al5Fe2Zn0.4和Al7Fe3Si0.3. 对接头试样进行拉伸试验,拉伸接头断裂在铝合金母材处,达到铝合金母材强度的100%,符合接头应用的力学指标.  相似文献   

13.
采用拉伸、SEM扫描、能谱分析、XRD测试、热–动力学解析等手段,调查、研究了钛合金/Cu/304 扩散焊接头的力学性能、反应相种类、生成顺序及生长厚度. 结果表明,在焊接压力5.0 MPa下,接头的抗拉强度随焊接温度和时间的增加先增高后降低,在焊接温度1 223 K、时间3.6 ks时获得最高接头强度为163 MPa;过分提高温度和时间对接头性能不利. 用铜作中间层,在Cu/304界面侧基本未生成金属间化合物,而在钛合金/Cu界面间形成了由固溶体、金属间化合物TixCuy,TixFey等组成的多层次过渡组织;由钛合金至不锈钢侧界面结构演化依次大致为Ti2Cu,TiCu,TiCu2,TiCu3,TiCu4,Ti2Fe、FeTi,TiFe2金属间化合物;生成的金属间化合物中TixCuy对接头强度的影响略显强于TixFey化合物的趋势;根据推导的经验公式,通过调控温度及时间可以调控金属间化合物的层厚.  相似文献   

14.
利用热模拟试验机并结合扫描电镜(SEM)对00Cr25Ni7Mo3N超级双相不锈钢的超塑扩散连接进行实验研究,对不同连接条件下的孔洞形貌、界面组织进行相应的分析。研究结果表明,超塑性扩散连接试样的界面结合强度随扩散连接压力的增大、表面质量的提高及连接时间的延长而增大。扩散连接在连接温度1100℃时,连接压力为10MPa~20MPa;待连接表面经精磨处理后,连接时间10min~20min的条件下,可实现焊合率为96%~98%的扩散连接,且连接试样的初始连接界面消失,界面孔洞基本闭合,界面剪切结合强度达到407MPa~413MPa。  相似文献   

15.
The HIP diffusion bonding of P/M titanium alloy Ti-6A1-4V and stainless steel 1Cr18Ni9Ti using pure Ni as intermediate layer was studied. Bonding joint with complex bonding interface was obtained by HIPing pre-alloyed Ti-6Al-4V powders and stainless steel 1Crl 8Ni9Ti in a vacuum canning. The joint strengths were examined and the characteristics of bonding joint were observed. The result shows that the maximized strength of HIP diffusion bonding between P/M titanium alloy Ti-6Al-4V and stainless steel 1Cr18Ni9Ti can be up to 388 MPa and the microstructure of bonding joint is acceptable.  相似文献   

16.
7A04铝合金/304不锈钢连续驱动摩擦焊及焊后热处理   总被引:2,自引:2,他引:0  
对7A04铝合金与304不锈钢异种材料进行了摩擦焊接试验,并对接头进行了不同温度、不同时间的退火处理.对接头飞边形貌、抗拉强度、断口形貌、金相组织、显微硬度等进行对比分析.结果表明,采用合适的工艺参数能获得形貌良好的飞边和更好的抗拉强度,焊合区的铝合金组织发生动态再结晶,晶粒细化,组织比基材更加致密,结合面两边互有元素扩散,焊合区显微硬度高于基材.经400℃×3 h退火处理的接头其抗拉强度提升明显,界面形成了不同的金属间化合物,扩散层厚度略有增加,显微硬度值有所下降.  相似文献   

17.
为了实现AlN陶瓷与Cu的低温连接、高温服役的目标,满足高温功率器件的服役需求,设计了一种连接方法,在350?℃的大气环境下采用超声辅助熔焊的方式在AlN陶瓷表面熔覆了Sn-Al-Cu活性钎料层,之后将熔覆活性钎料的AlN陶瓷与Cu在保温温度300?℃下进行过渡液相(transient?liquid?phase,?TL...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号