首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孟晓华  于大国 《机床与液压》2023,51(24):157-163
空间误差是影响车铣复合数控机床零件加工精度的最重要因素,现有方法对机床各轴的定位精度提升效果不好,为此设计车铣复合数控机床空间误差建模和补偿方法。忽略机床两个旋转轴的位置无关误差,通过齐次坐标变换理论构建其几何误差辨识模型,对几何误差辨识模型进行简化,实现两轴的几何误差辨识。在工件坐标系下,根据旋转轴几何误差辨识结果,采用多体理论构建机床空间误差模型。基于此误差模型,利用理想状态的逆运动学设计同步空间误差补偿策略,通过迭代方式对各轴补偿值进行计算,实现空间误差补偿。测试结果表明:设计方法补偿后,实验机床X轴、Y轴、Z轴的定位精度提升了0.6μm,B轴、C轴的定位精度提升了4″、3″,各轴的重复定位精度有很大提升,机床的反行程实验圆度也有所提升。  相似文献   

2.
王占领 《机床与液压》2014,42(22):55-56
数控机床定位精度和重复定位精度直接影响数控机床的加工精度。通过分析影响数控机床定位精度的原因,利用系统螺距误差补偿方法对数控机床进给系统的定位精度进行补偿。试验结果表明:该误差补偿策略显著提高了系统的位置精度和运动精度,为提高机床的加工精度奠定了基础。  相似文献   

3.
针对数控机床滚珠丝杆进给系统中反向间隙的存在严重影响数控机床定位精度的问题,提出基于加减速控制的自适应加速度反向间隙补偿方法。基于该方法建立反向间隙传动模型,计算补偿过程的加速时间,在加速时间不等于伺服周期整数倍时,反推补偿过程中的加速度值,从而准确补偿反向间隙,避免出现过补偿或欠补偿现象。通过仿真验证该补偿方法的有效性,数控平台实验结果是该补偿方法可将X轴目标点正、负向平均偏差减小在-2μm~3μm之间波动,表明所提出的方法可以有效降低因反向间隙造成的定位误差,提高了数控机床的定位精度。  相似文献   

4.
纪飞飞 《机床与液压》2019,47(4):154-159
宏/微双驱动微切削定位进给系统在航空航天、医疗、核能以及IC制造等领域具有广泛的应用,其定位进给精度是保证零件切削加工质量的根本。为了提高其定位进给精度,提出一种机械补偿与算法补偿相结合的递进式误差补偿方法:首先通过微动平台元件的压电致动特性实现对宏平台的粗误差机械方式补偿,再采用最小二乘法和BP神经网络误差补偿模型进行宏/微双驱动系统的精误差算法补偿。并通过误差补偿实验验证后得出,在微切削加工条件下,基于宏/微双驱动定位进给系统的递进式误差补偿法极大地提高了机床的定位进给精度;补偿后X、Y轴的误差波动区间集中在[-0.010,+0.010]μm,定位精度分别为0.006 mm和0.009 mm,重复定位精度为0.010 mm和0.013 mm,实现了系统的纳米级定位和10 nm级的重复定位。  相似文献   

5.
为了提高数控机床在线检测精度,研究机床各个轴的定位误差对数控机床在线检测精度的影响。针对数控机床误差补偿进行实验研究,采用激光干涉仪在数控机床上测量出各个轴的定位误差,将各个轴的定位误差依次进行补偿;并以Visual C++6. 0为工具,编写了三次样条曲线的算法程序,将测量的数据点拟合成一条曲线,达到可以预测机床任意点误差的效果;进行标准块检测实验。结果表明:在数控机床在线检测系统中实施误差补偿,效果较为明显,利用补偿软件可以实现对数控机床任意点进行补偿。  相似文献   

6.
石炳存 《机床与液压》2012,40(22):46-47,51
旋转轴是多轴数控机床关键性部件,其精度对机床精度影响巨大。分析转台常见安装误差对数控机床精度的影响,利用激光干涉仪对转台定位精度进行高密度的测量,通过优选误差点,确定少数补偿点进行补偿。补偿实验结果表明:关于数控机床转台安装误差对定位精度影响的理论分析正确,采用优选补偿点的补偿方法能有效消除转台安装误差的影响,数控机床转台定位精度明显提高。  相似文献   

7.
机床在加工的过程中会因为物理变形和热变形,使得加工零件的精度难以保证,因此必须对运动中的影响机床精度的误差源进行误差分析及实时补偿。利用激光干涉仪和球杆仪对数控机床定位精度进行检测,并建立了关于机床变形的检测数据的数学模型,确定了定位误差补偿方法,同时以具体的数控机床为例进行了定位精度检测与误差补偿,最后对补偿效果进行了分析。结果表明:该定位误差检测及补偿方法具有可行性与实用性,使数控机床的定位精度得到了显著的提高。  相似文献   

8.
为了降低机床主轴运行产生的热误差,建立混合算法优化BP神经网络预测模型,通过实验验证预测精度。分析模拟退火算法和粒子群算法的不足,采用模拟退火算法耦合粒子群算法,给出混合算法寻优步骤。引用BP神经网络结构,构造机床主轴热误差预测模型,采用混合算法优化BP神经网络预测模型。采用实验验证主轴热误差预测精度,并与优化前进行比较和分析。结果显示:采用混合算法优化后的BP神经网络预测模型,其Y轴方向产生的最大误差值从7.3μm降低到2.3μm;而Z轴方向产生的最大误差值从7.5μm降低到2.6μm。同时,机床主轴整体误差波动幅度较小。采用混合算法优化BP神经网络预测模型,用于机床主轴热误差在线补偿,提高了加工精度。  相似文献   

9.
数控机床的定位精度是影响其高精度性能的一个重要方面,因而也是数控机床验收和检测的重要指标之一。螺距误差是影响定位精度的重要因素,通过螺距误差补偿能够有效改善机床的定位精度和加工精度,对数控机床的使用和维护具有重要意义。对数控机床反向间隙补偿和螺距误差补偿的原理及测量方法进行深入研究,并针对XK714/1数控铣床FANUC 0M系统的螺距误差进行补偿,取得了良好的补偿效果,说明对滚珠丝杆传动机构的反向偏差与螺距误差进行补偿是恢复和提高机床精度的一种重要手段。  相似文献   

10.
数控机床在实际生产中,各轴伺服参数调整不好将影响机床的加工精度。为提高多轴联动中各轴伺服参数的匹配性,推导三轴数控机床加工轮廓误差的计算方法,分析三轴数控机床各轴进给系统伺服参数对轮廓误差的影响,提出2个进给轴之间伺服参数匹配方法。以人字齿的加工为例,对比了参数优化前后的实际加工轨迹,参数优化后人字齿的轮廓误差由优化前的300 μm减小到100 μm,各轴伺服参数匹配能够有效提高数控机床的加工精度。  相似文献   

11.
为了减小数控进给轴运动过程中产生的阿贝误差和余弦误差等几何误差对位置测量精度的影响,提出了一种基于多路激光组合测量的误差辨识与补偿方法。利用三路激光干涉仪的空间坐标关系和实际测量值,映射出数控进给轴理想运动轴线上的虚拟测量值,以补偿阿贝误差,并建立了进给轴倾斜角度解算模型,进而补偿余弦误差,提高进给轴定位精度。为保证位置测量结果的可靠性,设计了环境参数补偿实验,在减小环境因素影响的前提下,验证了误差辨识与补偿方法的有效性。实验结果表明,该方法有效补偿了运动过程中的阿贝误差以及余弦误差,提高了数控进给轴的定位精度。  相似文献   

12.
采用高速精密数控机床定位精度实验数据建立定位误差线性模型,再根据灰色模型和柯西问题公式建立定位误差非线性数学模型,用模糊综合评判法对两种模型进行二次评判,得出最优的预测模型,并用选取的定位误差补偿模型对机床定位误差进行补偿。补偿后,定位误差的0.95的置信区间上下限小于3μm,结果满足机床的设计使用要求。  相似文献   

13.
为了提高精密研抛数控机床的加工精度,对研抛数控机床的几何误差与热误差进行了研究与分析,发现随着机床相关部件温度的不断升高直至热稳态,机床的定位误差也不断增加到稳态值,验证了几何误差和热误差是精密及超精密加工误差的主要来源。综合考虑了机床复合误差的不同特点并进行误差分离,提出了基于牛顿插值算法和最小二乘法的几何与热复合误差建模方法,依据复合误差模型进行补偿实验,补偿后机床冷态下定位误差值从3.5μm降至1.2μm,误差降低了65.7%,热稳态后定位误差值从12.2μm降至1.9μm,误差降低了84.4%,实验结果证明复合误差模型计算简单、预测精度高、具有较好的鲁棒性,为提高机床的加工精度提供了理论与实践依据。  相似文献   

14.
为了大幅提升数控机床平动轴的运动精度,从而满足当代数控系统对其高精度的要求,针对机床平动轴的空间几何误差开展了深入研究,提出了可以有效辨识平动轴空间几何误差的便捷方法,并基于齐次坐标变换原理建立了平动轴空间几何误差的辨识模型;针对机床平动轴定位误差的特性,提出了可以实现有效补偿的增量式误差补偿原理,并建立了相应的误差补偿模型。经验证,所提出的平动轴误差辨识法和增量式误差补偿原理不仅理论正确,而且可以大幅地提高机床平动轴的定位精度。  相似文献   

15.
阐述了用Renishaw激光干涉法测量误差的原理,并且通过计算机控制的误差补偿系统对数控机床的定位误差进行补偿,实验结果表明这种方法可以大幅度提高数控机床的定位精度.通过分析数控机床机械传动部件的数学模型,得出数控机床进给系统低速爬行的原因,并提出了提高数控机床低速进给运动的平稳性和运动精度的措施.  相似文献   

16.
针对机床触发式测头进行系统误差校正时,需要通过数控机床控制器进行计算,从而导致操作困难且精度不高的问题,提出了一种新的测头系统误差补偿方法。该方法可以通过修改该方向上的测量速度,来对给定方向上的测头预行程进行校正,从而显著降低测头的误差。由于可以离线计算所有测量速度,因此控制器无需进行任何运算。分别在实验室和真实在机测量环境中,使用三维触发式测头对所提方法进行了测试。研究结果表明:该方法能够通过误差变速补偿实现触发式测头在机测量,无需控制器的复杂计算并且将误差降低了大约10倍,测头的误差从16.8μm减小到1μm。  相似文献   

17.
螺距误差的大小会影响机床的定位精度,通过数控系统提供的螺距误差补偿功能可以对机床的螺距误差进行修正,从而提高机床的定位精度。基于LNC-M510i数控系统进行螺距误差补偿技术的研究,为实际中进行螺距误差补偿的使用者提供一定的参考。  相似文献   

18.
为了满足微小复杂结构件的加工需要和机床误差补偿技术的研究,研制了一台微小型五轴数控机床实验平台,本体尺寸为580 mm×450 mm×570 mm。机床实验平台为卧式双转台结构,布局紧凑,空间利用率高,各轴采用了直线电机、直驱马达、丝杠滑台驱动方式。分析了机床的主要薄弱环节,并进行了受力分析和优化设计,仿真结果表明机床变形量由原来的69.323μm减小为2.686μm,得到了显著的改善。对机床进行了模态仿真,分析机床前四阶振型变形规律,为机床弱刚度变形误差补偿提供了参考依据。对加工刀路进行了规划和模拟,完成了铝合金棒料的加工实验。实验结果表明机床具有较好的加工能力,并验证了加工刀路规划的正确性。  相似文献   

19.
王宏颖  彭二宝 《机床与液压》2011,39(24):22-23,27
螺距误差是造成数控机床加工精度下降的重要原因之一.针对华中HED-21S数控实验台产生的螺距误差,通过分析螺距误差补偿原理,对z轴误差进行了补偿.实验结果表明:利用螺距误差补偿消除传动部件间隙,能够提高数控机床的定位精度和重复定位精度.  相似文献   

20.
在五轴数控机床加工中,由于旋转运动的影响,机床各轴线性插补的合成运动会使实际刀位运动偏离编程直线,造成编程直线和机床实际运动轨迹之间产生了误差,该误差被称为非线性误差。在对摆头转台五轴数控机床运动求解进行研究的基础上,基于机床的运动求解模型,分析了五坐标加工中的非线性误差的数学模型,提出了一种RTCP功能的插补算法,并通过MATLAB实例仿真验证该RTCP算法可以有效减小非线性误差,显著提高加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号