首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cu/Al扩散焊工艺及结合界面的组织性能   总被引:6,自引:0,他引:6  
李亚江  吴会强  陈茂爱  杨敏  冯涛 《焊接》2001,1(10):7-10
采用扫描电镜(SEM)、电子探针(EPMA)、显微硬度等测试方法对Cu/Al扩散焊工艺以及接头的组织性能进行了分析。试验结果表明:采用真空扩散焊工艺,在加热温度(520-540)℃、保温时间60min、压力11.5Pa时,在Cu/Al界面处形成明显的宽度约40μm的扩散过渡区,由于在铜侧过渡区中产生金融间化合物(Cu3Al)会出现硬度峰值,控制Al的扩散含量不超过10%,可避免或减少扩散过渡区中脆性金属间化合物的产生。  相似文献   

2.
Mg/Al异种材料真空扩散焊界面区域的显微组织   总被引:8,自引:1,他引:8       下载免费PDF全文
采用真空扩散焊技术对Mg/Al异种材料进行了焊接。采用金相显微镜、扫描电镜(SEM)、显微硬度计及X射线衍射(XRD)对扩散界面附近的显微组织及性能进行了试验研究。试验结果表明,Mg/Al异种材料真空扩散焊在加热温度Tp=450-490℃,压力强度P=0.08-0.10MPa,保温时间t=40-60min时能得到良好的扩散焊接头。扩散焊界面过渡区形成了致密的新相化合物层,断口形貌呈粗糙暗灰色,以解理断裂为主并伴有脆性的混合型断口,扩散界面过渡区生成了MgAl、Mg3Al2、Mg2Al3等金属间化合物。  相似文献   

3.
王敬  尹小燕  杨帅 《焊接技术》2011,40(12):15-17
铝及铝合金/钢焊接接头结合面上易产生Fe-Al脆性金属间化合物,使接头性能下降.而Fe,Al为主要代表元素,为研究方便,故采用真空扩散焊技术对Fe/Al异种材料进行焊接.利用扫描电镜(SEM)、电子背散射衍射仪(EBSD)及显微硬度计对扩散界面附近的显微组织结构、元素分布及扩散区硬度分布进行试验研究.结果表明:Fe/A...  相似文献   

4.
选取纯铜箔作过渡层,采用真空热压扩散工艺,在加热温度480~500 ℃、压力10 MPa、真空度1.0×10-2Pa工艺条件下,制备了变形铝合金LY12和不锈钢0Cr18Ni9Ti双金属复合材料.利用扫描电子显微镜(SEM)、电子探针(EPMA)、X射线衍射(XRD)、显微硬度(HV)等测试分析方法对双金属复合材料的两个连接界面及基体进行组织及性能分析.结果表明不锈钢-纯铜界面形成了宽为1.5 μm的互扩散区,但其过渡区无金属间化合物生成;铝/铜界面生成了宽约35 μm的扩散过渡区,过渡区的相组成为金属间化合物Al4Cu9,Al2Cu.  相似文献   

5.
以铜箔为中间层,对Super-Ni叠层复合材料与Ti-6Al-4V钛合金进行过渡液相扩散焊.通过扫描电镜(SEM)、能谱分析(EDS)、显微硬度测试对接头的界面组织及性能进行分析.结果表明,铜箔中间层阻止了钛与镍的扩散接触,防止了Ti-Ni脆性金属间化合物的生成.扩散焊接头由Super-Ni侧扩散层、中间反应层、钛侧扩散层三个特征界面层组成.界面处Ni,Al原子扩散缓慢,Cu,Ti原子充分扩散反应,在中间反应层与钛侧扩散层之间形成由TiCu相组成的锯齿状界面,在钛侧扩散层生成细小的Ti_2Cu相,接头过渡区显微硬度最高达600 HV0.5.  相似文献   

6.
采用Zn-2%Al(质量分数)药芯焊丝对5052铝合金和H62黄铜进行TIG熔钎焊搭接试验,并对接头显微组织、界面层结构及力学性能进行分析。结果表明:Zn-2%Al药芯焊丝在黄铜母材表面润湿性良好,能够获得较好的铝/黄铜熔钎焊接头。在黄铜侧过渡区形成块状和条状的Al Cu脆性金属间化合物相,同时在黄铜侧界面处形成Cu9Al4、Cu Zn金属间化合物层。随焊接热输入的增大,界面层厚度先增大后减小,接头拉伸载荷也是先增大后减小。焊缝中心区及界面层的显微硬度高于铝和黄铜母材的。接头拉伸时断于黄铜侧界面区,且断口为解理断裂。  相似文献   

7.
Al/Ti/Steel覆板爆炸焊接界面的显微组织特征   总被引:3,自引:0,他引:3  
利用电子显微技术研究了Al/Tl/Steel覆板爆炸焊接中两个异种焊接界面的显微组织变化特征,透射电镜直接取样观察到在界面处有组织过渡区,并且过渡区之间及过渡区与母材之间存在明显的边界,Al/Ti界面过渡区为Al+Ti混合组织;Ti/Steel界面由FeTi金属间化合物区和非晶区组成;过渡区的形态和宽度与焊接过程中的合金元素扩散及冷却速度有关。  相似文献   

8.
采用真空电子束焊对Ti3Al与TC11合金进行连接,研究不同焊接电流时其焊接界面合金元素扩散及显微硬度.结果表明,焊接电流的大小对合金元素在焊接界面上的扩散规律影响很小,均在焊缝和两侧基体交界处存在较大浓度梯度,这是由于焊接结束冷却时产生了粗大的凝固组织和相变且未有充分的能量和时间进行扩散所造成的.无论所采用焊接电流的大小,沿整个试样其焊缝处的显微硬度值均最高;随着焊接电流的增大,TC11侧和焊缝区的显微硬度值基本上增大,而焊接电流的变化对Ti3Al侧显微硬度值影响的规律性不强.  相似文献   

9.
张维翔  杜双明  刘刚  张庆安 《热加工工艺》2013,42(3):168-170,173
选取厚度50μm的纯Cu箔作为夹层,在加热温度480℃、保温时间30min、压力10MPa、真空度1×10-2pa条件下对AZ31B镁合金进行真空扩散焊连接,利用SEM、EDS、XRD、显微硬度计等测试方法对接头界面区域的显微组织和性能进行分析.试验结果表明,利用镁与铜原子互扩散在接头处形成扩散界面区,能够实现镁合金的可靠连接.焊接接头由靠近母材一侧的扩散过渡区和中间扩散区组成,其中扩散过渡区主要是Mg(Cu,Al)固溶体基体及弥散析出的Mg17(Al,Cu)12相,中间扩散区主要由Mg2Cu、MgCu2中间相和Mg(Cu)固溶体混合而成.在焊接接头界面区域内,显微硬度值呈现台阶式递增的分布规律,其中扩散过渡区的硬度高出镁基体15~20HV,而中间扩散区的硬度高出镁基体50~60HV.  相似文献   

10.
设计了不同厚度的Ni中间层,采用阶梯式真空扩散连接工艺方法,对Cu/Al的异质复合界面组织形貌及冶金反应进行了研究。利用扫描电镜(SEM)及能谱(EDS),对异质复合界面的微观组织进行了分析,采用剪切试验及显微硬度测试对异质复合界面的结合强度及硬度分布进行了研究。结果表明,Ni中间层可阻止Cu和Al间生成脆性金属间化合物,其中Ni/Al界面生成了明显的两层Al3Ni和Al3Ni2化合物,而Cu/Ni界面出现了明显的元素成分渐变的固溶体相;当添加Ni箔厚度为20μm时,Ni箔刚好消耗完,连接界面无明显缺陷,且界面的剪切强度最高。  相似文献   

11.
采用搅拌摩擦焊技术对4 mm厚6061-T6铝合金和纯铜进行连接,研究转速对铝铜异种金属接头组织与力学性能的影响。结果表明,当焊接速度为30 mm/min、搅拌头转速在1 200~1 800 r/min的范围内,可以获得表面成形良好、无缺陷的铝铜异种金属接头。大量破碎的铜被搅入焊核区,形成了组织结构复杂的区域。通过EDS和XRD分析,在焊核区内发现了Al_2Cu、Al_4Cu_9和Al Cu金属间化合物。在界面处,铝和铜发生相互扩散形成金属间化合物层,随着转速的提高,化合物层逐渐变厚。由于晶粒细化、固溶强化作用以及金属间化合物的生成,异种接头的焊核区平均显微硬度值高于铝铜两侧平均硬度,并且在焊核区出现硬度峰值点。随着转速的增加,接头抗拉强度呈现先增大后减小的趋势,所得最优接头抗拉强度为183 MPa,达到铜母材的71.8%,断裂位置位于铝侧热影响区,断裂方式为韧性断裂。  相似文献   

12.
采用ER5356铝镁焊丝对1060纯铝与T2紫铜进行了脉冲旁路耦合电弧MIG熔钎焊,并对接头宏观形貌、微观组织及力学性能进行了分析. 结果表明,在合适的焊接工艺参数下,可以获得成形美观、连续均匀、无缺陷的铝/铜异种金属接头. 焊接接头从铜侧以金属间化合物层、Al-Cu共晶体向焊缝过渡,金属间化合物主要由脆硬的Al2Cu相组成,而焊缝区主要由先析出的α(Al)固溶体以及从其晶界上析出的网状(Al)+S(Al2CuMg)/θ(Al2Cu)共晶组织组成. 随着焊接热输入的增加,金属间化合物层厚度明显增大,而焊接接头拉伸载荷先升高后下降,这与焊缝在铜母材上润湿铺展有关. 接头拉伸时,主要在铝母材热影响区和焊缝与铜母材界面处发生断裂.  相似文献   

13.
The morphology, elemental distribution, and phase analysis of the bonding interface were investigated by means of SEM, EDS, and XRD to evaluate the interface bonding properties of Al/316LSS clad metal prepared by explosive welding method. Furthermore, the micro-hardness and bending properties were also investigated. The results indicated that the linear and wavy bonding interfaces coexisted and intermetallic phases were present in the local interfacial zone. Moreover, the micro-hardness value at the bonding interface with intermetallic phases was higher than that at the interface without any intermetallic phases. In addition, bulk metal compounds could easily lead to the generation of micro-cracks during the bending forming process.  相似文献   

14.
陈健  崔庭 《焊接技术》2012,41(1):28-31,2
采用真空扩散连接工艺,对Al2O3弥散强化铜/纯铜的连接进行了试验研究.用扫描电镜分析了Al2O3弥散强化铜/纯铜扩散界面组织结构,研究了工艺参数对界面结合状态和组织结构的影响.通过正交试验得出各因素对接头抗拉强度的影响大小依次为:扩散温度>压力>保温时间.正交试验结果表明:焊接温度为550℃,保温时间为3h,压力为25 MPa时,可获得组织均匀致密、界面连续的Al2弥散铜/纯铜扩散焊接头,且接头抗拉强度高达116.9 MPa.  相似文献   

15.
采用扩散焊(DFW)技术制备了Cu/Al双金属,连接温度范围683-803K,连接时间范围20-80min,连接压力15MPa。Cu/Al双金属界面处的SEM试验结果表明,随着焊接温度的升高和保温时间的延长,界面层厚度逐渐增加,在连接温度为803K,连接时间80min,Cu/Al界面处形成了Al4Cu9,Al3Cu4,AlCu、Al2Cu金属间化合物(从铜侧到铝侧),根据扩散动力学,金属间化合物(IMCS)的生成顺序为Al2Cu、Al4Cu9、AlCu、Al3Cu4。Cu / Al双金属的剪切试验显示为脆性断裂,并且界面强度随着IMC的减少而增加。在723 K的焊接温度下进行20分钟焊接后,Cu / Al双金属的剪切强度最高为63.8 MPa。  相似文献   

16.
Conventional fusion welding of aluminium and copper dissimilar materials is difficult because of poor weldability arising from the formation of brittle intermetallic compounds on the weld zone as well as different chemical, mechanical and thermal properties of welded joints. Joining of Al and Cu plates or sheets offers a metallurgical challenge due to unavoidable formation of brittle intermetallic compounds. Therefore, it is necessary to effectively suppress the formation and growth of Al–Cu intermetallic compounds. For welding of dissimilar Al and Cu sheets, no systematic work has been conducted to reduce these defects. Thus, this paper focuses on the effect of welding speed on the quality of a lap weld joint in the Al and Cu sheets with a single mode fibre laser. It was found that consequently sound strong weld joints could be produced by suppressing the formation of intermetallic compounds in the interface zone at extremely high speeds.  相似文献   

17.
The characteristics of phase constitution near the interface of Fe3Al/Q235 diffusion bonding are researched by means of scanning electron microscope, X-ray diffraction and transmission electron microscope, etc. The test results indicated that an obvious diffusion transition zone forms near the Fe3Al/Q235 interface as a result of vacuum diffusion bonding (heating temperature 1050–1080 °C, holding time 60 min and pressure 9.8 MPa). The maximum value of the Al content in the transition zone was 16.6 wt.% (about 28.5 at.%). The micro-hardness in the diffusion transition zone was HM 200–400. The transition zone consists of Fe3Al and α-Fe(Al) solid solution. There was no brittle phase of high hardness near the diffusion interface. This is favorable to the enhancing of the toughness of Fe3Al/Q235 diffusion joint.  相似文献   

18.
SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding, respectively, and the microstructures and mechanical properties of these joints were investigated. The results revealed that SiC particle segregation was more likely during centered electron beam welding (than during deflection beam welding), and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds. Moreover, the tensile strength of the joints was 104 MPa. The interface reaction was restrained via deflection electron beam welding, and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al. Quasi-cleavage fracture occurred at the interface reaction layer of the base metal. Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.  相似文献   

19.
分别采用电子束对中焊、偏束焊技术,研究了Si C颗粒增强铝基复合材料Si Cp/2024与2219铝合金的接头组织及力学性能.结果表明,对中焊时接头易出现Si C增强相的偏聚,同时发生严重的界面反应,生成大量脆性相Al4C3,接头抗拉强度最高为104 MPa.采用偏束焊工艺可以很好地抑制界面反应,通常只在焊缝上部与Si Cp/Al热影响区上部生成少量脆性相Al4C3,接头抗拉强度最高可达131 MPa.试件均断裂在母材界面反应层上,且为明显的脆性断裂.不同工艺下接头横截面硬度分布存在突变区,该区域在Si Cp/2024熔合区附近,该处脆性相Al4C3的生成导致硬度升高.  相似文献   

20.
研究了Ti3Al基合金与TC11钛合金采用不同参数的电子束焊接的双合金件,经近等温锻造和热处理后,近等温锻造工艺参数对合金元素在焊接界面上扩散的影响。结果表明,应变速率和变形量对不同参数焊接的双合金件焊接界面合金元素扩散的影响类似,均随着应变速率的降低及变形量的增大扩散更充分。但当变形20%时,合金元素以沿晶界扩散的管道机制为主;当变形40%时,扩散以晶间扩散机制为主。此外,Ti元素在焊缝区的反常扩散是由于Ti原子的点阵位置被从Ti3Al侧扩散而来的Nb原子所占据,被替代的Ti原子从DO19六方有序结构中扩散出来聚集所造成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号