首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy. The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm. By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification. The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited. In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

2.
Abstract

To treat mixed columnar–equiaxed solidification with dendritic morphology, five phase regions have been distinguished: extradendritic melt, interdendritic melt and solid dendrites in equiaxed grains, interdendritic melt and solid dendrites in columnar arrays of dendrites. These five phases are quantified by their volume fractions, and characterized by different volume-averaged solute concentrations. The equiaxed grains and columnar dendrites are confined by their envelopes, whose shapes are described by morphological parameters. The evolution of the envelopes is derived based on recent growth theories: the growth of primary columnar dendrite tips by the Kurz–Giovanola–Trivedi (KGT) model, the growth of secondary dendrite tips in radial direction of columnar trunk and the equiaxed dendrite tips by the Lipton–Glicksman–Kurz (LGK) model. The solidification of the interdendritic melt is governed by diffusion in the interdendritic melt region. Preliminary modelling results on a benchmark casting (Al–4·7wt-% Cu) show the potentials of the model.  相似文献   

3.
In this paper we made an attempt to assess the solidification and flow behavior of the AlSi7Mg alloy melt flowing down the cooling slope, by calculating the Reynolds number of the flowing melt. It has been found that the length of the laminar regime within the flowing melt (low-convection flow) depends on the angle of slope. The microstructure of as-cast AlSi7Mg alloy processed by low-convection-casting using cooling slope method has been studied. The microstructure reveals dendritic primary α-Al phase with fine fibrous eutectic silicon in the interdendritic regions. The modification of eutectic silicon occurs predominately by the shearing of the solute-rich liquid between the primary α-Al dendrites prior to eutectic solidification as it flows down the cooling slope. Nucleation and growth of the primary silicon dendrites was also observed, which confirms earlier reports on three-layer theory. The mechanism responsible for the refinement of eutectic phase is the enhanced heterogeneous nucleation in the last liquid to solidify.  相似文献   

4.
Abstract

Iron and manganese are common impurity elements in cast aluminium alloys, especially in secondary aluminium. During casting Fe/Mn-containing intermetallics are formed between the aluminium dendrites, which cause porosity and shrinkage defects. In this paper an experimental study on the influence of controlled convection during solidification on the spatial arrangement of intermetallic phases and their interaction with the dendritic microstructure in Al–7Si–1Fe (AlSiFe) and Al–7Si–1Mn (AlSiMn) alloys (wt-%) is presented. Forced convection is induced by a rotating magnetic field. The alloys are solidified directionally over a range of constant solidification velocities (0·015–0·18 mm s–1) at a constant temperature gradient G of 3 K mm–1. The results indicate that the primary spacing and the secondary dendrite arm spacing are affected by the presence of Fe and Mn intermetallic phases. In samples solidified under forced convections the primary dendrite arm spacing did not depend on the solidification velocity and no obvious fluid flow effect on the secondary spacing could be detected. These observations are in contrast to Fe and Mn free alloys. It seems that the intermetallics act as a barrier for the flow into the mushy zone.  相似文献   

5.
Abstract

The presence of bulk and interdendritic flow during solidification can alter the microstructure, potentially leading to the formation of defects. In this paper, a numerical model is presented for the direct simulation of dendritic growth in the presence of fluid flow in both liquid and mushy zones. The Navier–Stokes equations are solved for multiphase flow using a projection method. The energy conservation and solute diffusion equations are solved via a combined stochastic nucleation approach and finite difference solution to simulate dendritic growth. The predicted microstructures illustrate typical asymmetric dendritic growth behaviour under forced convection, which is consistent with prior similar simulations of a single dendrite during unconstrained growth (both 2D and 3D). The micromodel was coupled with a macromodel to investigate the effects of forced fluid flow on equiaxed dendritic growth and micro-segregation during vacuum arc remelting.  相似文献   

6.
Abstract

Capabilities of the X-ray attenuation contrast radioscopy were utilised to provide a real time diagnostic technique for observations of dendritic growth and fragmentation during solidification of a Ga–30In (wt-%) alloy. The solidification process was visualised by means of a microfocus X-ray tube providing shadow radiographs at spatial resolutions of about 10 μm. Experiments have been carried out to solidify the Ga–In alloy unidirectionally either starting from the bottom or the top of the specimen. The first case is significantly affected by solutal convection, which governs a redistribution of solute concentration. A detachment of dendrite side arms, which is unambiguously caused by melt flow, was not observed. Dendritic fragmentation occurs during the solidification in the reverse top down direction. Variations of the applied cooling rate excited a transition from a columnar to an equiaxed dendritic growth (CET).  相似文献   

7.
Abstract

The effects of a constant uniform magnetic field on thermoelectric currents during dendritic solidification were investigated using a two-dimensional enthalpy based numerical model. Using an approximation for three-dimensional unconstricted growth, the resulting Lorentz forces generate a circulating flow influencing the solidification pattern. Under the presence of a strong magnetic field secondary growth on the clockwise side of the primary arm of the dendrite was encouraged, whereas the anticlockwise side is suppressed due to a reduction in local free energy. The preferred direction of growth rotated in the clockwise sense under an anticlockwise flow. The tip velocity is significantly increased compared with growth in stagnant flow. This is due to a small recirculation at the tip of the dendrite; bringing in colder liquid and lowering the concentration of solute.  相似文献   

8.
The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104 μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.  相似文献   

9.
10.
Abstract

A new method known as CHAPEL (Continuous Hydrogen Analysis by Pressure Evaluation in Liquids) for measuring hydrogen content in molten aluminium alloys has been developed and tested. The method relies on direct measurement of the hydrogen partial pressure in the melt. A number of interesting potential applications are indicated on the basis of laboratory and industrial experiences. The main advantage of the CHAPEL method, as compared to other techniques, is its ability to provide direct, continuous measurement of hydrogen in the melt, making it particularly suitable for process monitoring of aluminium melt quality. This paper systematically examines the influence of hydrogen content on porosity in aluminium-silicon cast alloys, taking solidification conditions and melt treatment into account. In this system, the greatest susceptibility to porosity is encountered with AlSi7Mg. An influence of the solidification rate on porosity, which varied with different hydrogen contents, was noted. The work describes a number of typical pore shapes and their distribution on the basis of metallographic studies.  相似文献   

11.
Abstract

The solidification of cast components is a complex and important process as this is the moment when the final properties are established. For hypoeutectic grey iron, solidification starts with nucleation and growth of the primary austenite followed by the eutectic reaction forming eutectic cells. In this work, the microstructure and significance of the different constituents formed during solidification has been examined. It was found that the size of the eutectic cells is a function of secondary dendrite arm spacing (SDAS). The SDAS, on the other hand, was found to depend on the solidification time and hence the growth rate of the dendrites. The effect of chemical composition on SDAS and eutectic cell size was found to depend on cooling rate. It is suggested that the relationship between the eutectic cells and dendrite arm spacing is based on segregation effects and the nucleating capacity of the melt.  相似文献   

12.
The thermosolutal convection can alter segregation pattern,change dendrite morphology and even cause freckles formation in alloy solidification.In this work,the multiphase-field model was coupled with lattice Boltzmann method to simulate the dendrite growth under melt convection in superalloy solidification.In the isothermal solidification simulations,zero and normal gravitational accelerations were applied to investigate the effects of gravity on the dendrite morphology and the magnitude of melt flow.The solute distribution of each alloy component along with the dendrite tip velocity during solidification was obtained,and the natural convection has been confirmed to affect the microsegregation pattern and the dendrite growth velocity.In the directional solidification simulations,two typical temperature gradients were applied,and the dendrite morphology and fluid velocity in the mushy zone during solidification were analyzed.It is found that the freckles will form when the average fluid velocity in the mushy zone exceeds the withdraw velocity.  相似文献   

13.
相场法模拟凝固微观组织演化研究进展   总被引:2,自引:0,他引:2  
相场法是凝固组织模拟中最有潜力的方法之一,近年来已成为凝固领域研究的热点.本文论述了相场法模拟凝固微观组织的原理,并分别介绍了无流动和流动条件下相场法模拟自由枝晶、定向凝固界面及小平面枝晶在国内外的研究进展,指出了进一步的研究方向.  相似文献   

14.
三元合金凝固过程枝晶生长数值模拟   总被引:3,自引:0,他引:3  
郭大勇  杨院生 《铸造》2006,55(6):601-603,607
建立了使用元胞自动机方法结合合金凝固过程动量、能量和质量传输计算三元合金枝晶形貌与偏析发展的数学模型.把该数学模型应用到了Fe-C-Si三元合金凝固过程,枝晶臂的生长、粗化过程,以及枝晶间的微观偏析得到了再现.同时该数学模型也描述了凝固过程熔体流动对Fe-C-Si合金凝固过程枝晶形貌发展的影响.  相似文献   

15.
Abstract

This paper presents recent progress of in situ observation for the microstructure evolution during solidification. Nucleation and fragmentation of dendrite arms are important issues for controlling microstructure during solidification. However, there are few studies on in situ observation of nucleation and fragmentation in metallic alloys. Time resolved X-ray imaging technique has been developed to observe solidification of metallic alloy systems in situ. Fragmentation of dendrite arms often occurred at the root after growth velocity was reduced for the Sn–13 at.-%Bi alloys and the Al–15 mass%Cu alloys. In the Al–15 mass%Cu alloys, both of nucleation and fragmentation contribute to formation of grain structure. The result suggested that fragmentation should be considered for controlling grain structure.  相似文献   

16.
Abstract

Coarsening of dendrite arms during continuous solidification is usually characterised by measuring the secondary dendrite arm spacing (SDAS). Images obtained in-situ from X-ray microscopy studies during solidification were used to study SDAS development. Local coarsening and growth kinetics were studied during the solidification of high-solute content aluminium alloys (i.e. Al–30 Cu and Al–20 Cu (wt-%)). Downward and upward solidification conditions were imposed on the sample alloys in order to study the effect of those on coarsening and growth kinetics. The dendritic arrangement, direction of growth and growth fluctuations influence solute-rich liquid distribution which in turn affects solute gradients changing undercooling and thus coarsening and growth kinetics.  相似文献   

17.
Abstract

Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification. Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular, focus is put on how the composition of the dendrite core is affected by modifications to the alloy. It has previously been shown that when the overlay material corrodes, the corrosion take place in the dendrite core. Therefore, the discussion will be directed towards explaining the extent to which the variations in chemical compositions influence the composition of the dendrite core of the weld overlay.  相似文献   

18.
熔体过热对AISI 304不锈钢亚快速凝固薄带组织的影响   总被引:2,自引:0,他引:2  
采用水冷铜模薄带铸造方法研究了熔体过热对AISI 304不锈钢亚快速凝固薄带组织的影响.结果表明:AISI 304不锈钢亚快速凝固薄带由外层的胞状奥氏体组织、次外层的柱状铁素体枝晶组织和中心的等轴铁素体枝晶组织组成;随着熔体过热度增加,奥氏体胞晶间距和柱状铁素体二次枝晶间距随之增加,残余铁素体含量亦降低.过热度的增加降低了熔体过冷度和冷却速率,造成薄带凝固组织中枝晶间距的增加和残余铁素体含量的降低.  相似文献   

19.
建立了模拟二元合金树枝晶生长的三维元胞自动机模型,以Al-4%Cu(质量分数)为模型合金,模拟了合金过冷熔体中树枝晶的生长过程,研究了来流对枝晶生长的影响.结果表明,来流对合金过冷熔体中三维树枝晶生长影响显著,迎流侧枝晶尖端生长速度随来流速度的增大而增大,枝晶尖端半径随来流速度的增大而减小;随着来流速度的增大,枝晶尖端选择参数减小;在给定过冷度条件下,随界面能各向异性的增大,来流对枝晶尖端选择参数的影响增强;对于给定的合金(或界面能各向异性),来流对枝晶尖端选择参数的影响随着过冷度的增大而增强.  相似文献   

20.
Herein, a hot tearing measured system with external excitation coil and a differential thermal analysis system with applied magnetic field were used to study the effects of low-frequency alternating magnetic field on the solidification behavior and hot tearing susceptibility(HTS) of the AXJ530 alloy under different magnetic field parameters. The hot tearing volume of the castings was measured via paraffin infiltration method. The microstructure of the hot tearing zone of the casting was observed using optical microscopy and scanning electron microscopy, and the phase composition was analyzed using X-ray diffraction and energy depressive spectroscopy. The experimental results show that the solidification interval of AXJ530 alloy was shortened and the dendrite coherency temperature of the alloy decreased with the increase in frequency of alternating magnetic field. Under appropriate magnetic field parameters, the electromagnetic force could enhance the convection in the melt to promote the flow of the residual liquid phase, refine the microstructure, and optimize the feeding channel in the late solidification stage, which reduced the HTS of the alloy. However, when the magnetic field frequency was increased to 15 Hz, the induced current generated excessive Joule heat to the melt. At this time, the thermal action of the magnetic field coarsened the microstructure of the alloy, resulting in an increase in HTS of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号