首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用专利挤压铸造方法制备了3种Mo体积分数分别为55%、60%和67%的Mo/Cu复合材料,并对其微观组织和导热性能进行了研究.结果表明:Mo颗粒分布均匀,Mo/Cu界面干净,不存在任何界面反应物和非晶层;复合材料组织均匀、致密,且致密度高达99%以上;复合材料的热导率为220~270 W/(m·K),并随着Mo含量的增加而降低.混合定律(ROM)较好地预测了55%Mo/Cu复合材料的热导率,而采用Maxwell模型和H-M模型的计算值与60%和67%Mo/Cu复合材料的热导率测试值一致.  相似文献   

2.
Spark plasma sintering (SPS) was used to fabricate Al/diamond composites. The influence of diamond particle size on the microstructure and thermal conductivity (TC) of composites was investigated by combining experimental results with model prediction. The results show that both composites with 40 μm particles and 70 μm particles exhibit high density and good TC, and the composite with 70 μm particles indicates an excellent TC of 325 W·m−1·K−1. Their TCs lay between the theoretical estimated bounds. In contrast, the composite with 100 μm particles demonstrates low density as well as poor TC due to its high porosity and weak interfacial bonding. Its TC is even considerably less than the lower bound of the predicted value. Using larger diamond particles can further enhance thermal conductive performance only based on the premise that highly dense composites of strong interfacial bonding can be obtained.  相似文献   

3.
4.
Fabrication, microstructure and properties of SiCp/Cu heat sink materials   总被引:2,自引:0,他引:2  
Cu-coated powder was fabricated by electroless plating process, and the composition and morphology of coated powder were studied.Moreover, Cu-30, 40, 50 vol.%SiCp heat sink materials were fabricated by hot pressing using coated and uncoated powder.And the microstructure and thermophysical properties of the heat sink materials were also studied.The results show that SiCp particles distribute uniformly in heat sink materials and the interface between SiCp particles and Cu matrix is clear and well bonded.On the condition of same volume fraction of SiCp, the thermal conductivity of the material using coated powder is larger than that of the material using uncoated powder.Under experiment conditions, the thermal conductivity and coefficient of thermal expansion of Cu-30 vol.%SiCp heat sink material is 236.2 W·m-1·K-1 and 9.9×10-6/K (30-200 ℃) respectively.It provides important reference data for future experiments.  相似文献   

5.
The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.  相似文献   

6.
含高体积分数SiCp的铝基复合材料制备与性能   总被引:13,自引:7,他引:13  
以电子封装为应用对象, 通过合理选择一定粒径分布的SiC颗粒, 采用挤压铸造方法制备了SiC颗粒体积分数分别为50%, 60%和70%的3种SiCp/Al复合材料. 材料组织致密, 颗粒分布均匀. 复合材料的平均线热膨胀系数(20~100 ℃)随SiC含量的增加而降低, 在8.3×10-6~10.8×10-6/℃之间, 与Kerner模型预测值相符. 复合材料比强度和比刚度高, 均可以满足电子封装应用的技术要求.  相似文献   

7.
Pure aluminium and high-silicon aluminium alloy were reinforced with the discontinuous pitch-based carbon fibres by squeeze casting, then the thermal conductivity and the mechanical properties of the composites were investigated. Optical microscopy revealed that the fibres were in a random planar arrangement, and the transmission electron microscopy revealed that there is no interfacial reaction between the matrices and the fibres. The random planar arrangement of the fibres leads to the anisotropy of the composite. The fibre-reinforcement increased the thermal conductivity in the parallel direction for both pure aluminium and its alloy matrices, while the thermal conductivity decreased in the vertical direction. The increase in the elastic modulus by the reinforcement was not observed for both matrices. The proof stress of the pure aluminium increased by the reinforcement especially in the parallel direction, while that of the high-silicon alloy decreased by the reinforcement.  相似文献   

8.
9.
2024 aluminum matrix composites reinforced with different size AIN particles (0.5, 4 and 10 μm) were fabricated by the squeeze-casting technology. The aging behavior and microstructure of AINp/2024AI composites were investigated by Brinell hardness measurement and transmission electron microscopy (TEM). The results show that the precipitation sequence of AINJ2024AI composites is similar to that of the matrix alloy aged at 160 and 190 ℃, but the age hardening rate of composites is improved, and the AIN particles with large size promote the precipitation process more obviously, in comparison with smaller AIN particles. With increasing temperature, the precipitation processes are accelerated, and the time to reach the peak hardness is shortened. The acceleration of the formation of GP region and phase S' in the composites is attributed to the interfaces (between particles and the matrix) and the high density of dislocations introduced by addition of AIN particles.  相似文献   

10.
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied.The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 μm-size diamonds.The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated.The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu.It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.  相似文献   

11.
12.
SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the damping behaviors of composites were also investigated. The results show that the microstructure of composites was dense and homogeneous, without any interfacial reactivity among reinforcement/matrix interfaces. Compared with the damping capacity of 2024Al, the damping capacity of composites was enhanced significantly by addition of SiC or graphite particulates. The main damping mechanisms of SiCo/Al composites were ascribed to the dislocation damping, and those of SiCo/Gr/2024Al were attributed to the intrinsic damping and interface damping.  相似文献   

13.
采用挤压铸造法制备了不同体积分数的TiBzv/6061Al复合材料,利用扫描电镜、透射电镜、硬度计、三点弯曲等手段对复合材料的组织与力学性能进行了研究,分析了热处理工艺对其组织性能的影响。结果表明:不同的热处理条件下TiB2P/6061Al复合材料的组织不同:退火态时观察到再结晶晶粒和少量位错:时效态时观察到大量的位错和析出相,界面产物尺寸比退火态时相对大些,且在界面附近的基体中存在明显的无析出区。热处理状态对弹性模量的影响不大,但对材料的硬度和抗弯强度影响较大。45%TiB2v/6061Al复合材料时效处理后硬度和抗弯强度分别比退火态时提高了40%和23%。  相似文献   

14.
Preparation of SiCp/Cu composites by Ti-activated pressureless infiltration   总被引:1,自引:0,他引:1  
Sessile drop technique was used to investigate the influence of Ti on the wetting behaviour of copper alloy on SiC substrate. A low contact angle of 15° for Cu alloy on SiC substrate is obtained at the temperature of 1 100℃. The interfacial energy is lowered by the segregation of Ti and the formation of reaction product TiC, resulting in the significant enhancement of wettability. Ti is found to almost completely segregate to Cu/SiC interface. This agrees well with a coverage of 99.8%Ti at the Cu/SiC interface predicted fi'om a simple model based on Gibbs adsorption isotherm. SiCp/Cu composites are produced by pressureless infiltration of copper alloy into Ti-activated SiC preform. The volume fraction of SiC reaches 57%. The densiflcation achieves 97.5%. The bending strength varies fi'om 150 MPa to 250 MPa and increases with decreasing particle size.  相似文献   

15.
Diamond/metal composites with 50 vol.% diamond have been produced by spark plasma sintering (SPS) using pure Ag as a matrix and diamond particles as reinforcement. Three kinds of powder mixing processes were used to prepare the mixture of diamond/Ag powders: dry mixing without milling medium, wet mixing and magnetic blending. Subsequently, they were all consolidated by SPS at various processing parameters to produce bulk diamond/Ag composites. Then samples were heat treated in order to obtain a higher thermal conductivity. The effect of processing parameters on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated by comparing the experimental data. It reveals that particles were easy to agglomerate and the distribution of mixed powders was inhomogeneous by dry mixing method, and wet mixing method is too complex. The most favorable mixing process is magnetic blending by which the powders can be homogenously mixed and the composites prepared by optimized SPS processing parameters can obtain the highest relative density and the best thermal conductivity among the composites prepared by different processes. The magnetic blending diamond/Ag composites even have a 23% increase in thermal conductivity compared with pure silver sintered by SPS.  相似文献   

16.
Diamond reinforced copper (Cu/diamond) composites were prepared by a pressure infiltration technique.The composites show a super high conductivity of 713 W m-1 K-1 in combination with an extremely low coefficient of thermal expansion (CTE) of 7.72 × 10-6 K-1 (25-100 ℃),which are achieved by modifying the copper matrix with adding 0.3 wt.% of boron to get a good thermal contact between the matrix and the diamond particles.By adopting a series of postmachining techniques the composites were made into near-net-shape parts,and an electroless silver coating was also successfully plated on the composites.Finally,their potential applications in the thermal management of light emitting diodes (LED) were illustrated via prototype examples.  相似文献   

17.
18.
The different copper coatings with thickness varying from 0.3 lain to 1.5 lain were deposited on carbon fibers using either eleetroless plating or electroplating method. The coated fibers were chopped and composites were fabricated with melting aluminum at 700 ℃. The effect of the copper layer on the microstructure in the system was discussed. The results show that the copper layer has fully reacted with aluminum matrix, and the intermetallic compound CuAl2 forms through SEM observation and XRD, EDX analysis. The results of tensile tests indicate that composites fabricated using carbon fibers with 0.7-1.1 lain copper coating perform best and the composites turn to more brittle as the thickness of copper coating increases. The fracture surface observation exhibits good interface bonding and ductility of the matrix alloy when the thickness of copper coating is about 0.7-1.1 μm.  相似文献   

19.
A finite element analysis was carried out on the development of residual stresses during the cooling process from the fabrication temperature in the SiCp reinforced AI matrix composites. In the simulation, the two-dimensional and random distribution multi-particle unit cell model and plane strain conditions were used. By incorporating the Taylor-based nonlocal plasticity theory, the effect of particle size on the nature, magnitude and distribution of residual stresses of the composites was studied. The magnitude thermal-stress-induced plastic deformation during cooling was also calculated. The results show similarities in the patterns of thermal residual stress and strain distributions for all ranges of particle size. However, they show differences in magnitude of thermal residual stress as a result of strain gradient effect. The average thermal residual stress increases with decreasing particle size, and the residual plastic strain decreases with decreasing particle size.  相似文献   

20.
亚微米SiCp含量对SiCp/Cu基复合材料性能的影响   总被引:1,自引:0,他引:1  
以亚微米级(130nm)碳化硅颗粒(SiCp)和微米级(10μm)Cu粉为原料,采用冷压烧结和热挤压方法制备出SiCp/Cu基复合材料,研究其SiCp含量对SiCp/Cu基复合材料电学、力学和摩擦学性能的影响。结果表明:当SiCp体积含量从0.5%增高到5.0%时,电导率从96.2%IACS下降到87.4%IACS,维氏硬度从64.8MPa增高到87.8MPa,抗拉强度从213.3MPa增大到217.3MPa,伸长率从41.5%下降到8.6%;SiCp/Cu基复合材料具有优良的摩擦学性能,0.5%SiCp/Cu基复合材料和5.0%SiCp/Cu基复合材料的磨损质量损失在载荷为300~1200N时分别仅是工业供应态T3铜的1/4.07~1/1.13和1/14.25~1/2.10,亚表层疲劳裂纹引发的疲劳磨损是SiCp/Cu基复合材料的磨损机理之一,磨损表面和亚表面没有明显的来自对磨钢的Fe元素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号